Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Clonal interrogation of stem cells

Abstract

Individual stem cells are functionally defined by their self-renewal and differentiation potential. Methods for clonal analysis are essential for understanding stem cells, particularly given the increasing evidence for stem-cell heterogeneity. Stem cells reside within complex microenvironments, making single-cell analysis particularly challenging. Furthermore, simultaneous molecular and functional characterization of single stem cells is not trivial. Here we explore clonal assays applied to stem cell biology and their use in understanding the cellular and molecular basis of stem-cell identity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Studying heterogeneity within stem cell populations.

References

  1. 1

    He, S., Nakada, D. & Morrison, S.J. Mechanisms of stem cell self-renewal. Annu. Rev. Cell Dev. Biol. 25, 377–406 (2009).

    CAS  Article  Google Scholar 

  2. 2

    O'Brien, C.A., Kreso, A. & Jamieson, C.H. Cancer stem cells and self-renewal. Clin. Cancer Res. 16, 3113–3120 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Stewart, M.H. et al. Clonal isolation of hESCs reveals heterogeneity within the pluripotent stem cell compartment. Nat. Methods 3, 807–815 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Bendall, S.C. et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448, 1015–1021 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Walker, A., et al. Non-muscle myosin II regulates survival threshold of pluripotent stem cells. Nat. Commun. 1, doi:10 1038/ncomms1074 (2010).

  7. 7

    Dykstra, B. et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1, 218–229 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Hope, K.J., Jin, L. & Dick, J.E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat. Immunol. 5, 738–743 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Notta, F. et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 469, 362–367 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Scadden, D.T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Bendall, S.C., Stewart, M.H. & Bhatia, M. Human embryonic stem cells: lessons from stem cell niches in vivo . Regen. Med. 3, 365–376 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Morrison, S.J., Shah, N.M. & Anderson, D.J. Regulatory mechanisms in stem cell biology. Cell 88, 287–298 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Stewart, M.H., Bendall, S.C. & Bhatia, M. Deconstructing human embryonic stem cell cultures: niche regulation of self-renewal and pluripotency. J. Mol. Med. 86, 875–886 (2008).

    Article  Google Scholar 

  15. 15

    Adewumi, O. et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25, 803–816 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Andrews, P.W. From teratocarcinomas to embryonic stem cells. Phil. Trans. R. Soc. Lond. B 357, 405–417 (2002).

    Article  Google Scholar 

  17. 17

    Ellis, J. et al. Alternative induced pluripotent stem cell characterization criteria for in vitro applications. Cell Stem Cell 4, 198–199, author reply 202 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Werbowetski-Ogilvie, T. et al. Characterization of human embryonic stem cells with features of neoplastic progression. Nat. Biotechnol. 27, 91–97 (2008).

    Article  Google Scholar 

  19. 19

    Stewart, M.H., Bendall, S.C., Levadoux-Martin, M. & Bhatia, M. Clonal tracking of hESCs reveals differential contribution to functional assays. Nat. Methods 7, 917–922 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

    CAS  Article  Google Scholar 

  21. 21

    George, S.H. et al. Developmental and adult phenotyping directly from mutant embryonic stem cells. Proc. Natl. Acad. Sci. USA 104, 4455–4460 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Wu, A.M., Till, J.E., Siminovitch, L. & McCulloch, E.A. Cytological evidence for a relationship between normal hemotopoietic colony-forming cells and cells of the lymphoid system. J. Exp. Med. 127, 455–464 (1968).

    CAS  Article  Google Scholar 

  23. 23

    Hong, D. et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 319, 336–339 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Bernstein, I.D. et al. Differences in the frequency of normal and clonal precursors of colony-forming cells in chronic myelogenous leukemia and acute myelogenous leukemia. Blood 79, 1811–1816 (1992).

    CAS  PubMed  Google Scholar 

  25. 25

    Nienhuis, A.W., Dunbar, C.E. & Sorrentino, B.P. Genotoxicity of retroviral integration in hematopoietic cells. Mol. Ther. 13, 1031–1049 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Dick, J.E., Magli, M.C., Huszar, D., Phillips, R.A. & Bernstein, A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 42, 71–79 (1985).

    CAS  Article  Google Scholar 

  27. 27

    Keller, G., Paige, C., Gilboa, E. & Wagner, E.F. Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 318, 149–154 (1985).

    CAS  Article  Google Scholar 

  28. 28

    Smith, L.G., Weissman, I.L. & Heimfeld, S. Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proc. Natl. Acad. Sci. USA 88, 2788–2792 (1991).

    CAS  Article  Google Scholar 

  29. 29

    Morshead, C.M., Benveniste, P., Iscove, N.N. & van der Kooy, D. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat. Med. 8, 268–273 (2002).

    CAS  Article  Google Scholar 

  30. 30

    Kiel, M.J., Yilmaz, O.H., Iwashita, T., Terhorst, C. & Morrison, S.J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Benveniste, P., Cantin, C., Hyam, D. & Iscove, N.N. Hematopoietic stem cells engraft in mice with absolute efficiency. Nat. Immunol. 4, 708–713 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Yilmaz, O.H., Kiel, M.J. & Morrison, S.J. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107, 924–930 (2006).

    CAS  Article  Google Scholar 

  33. 33

    Zhang, C.C. & Lodish, H.F. Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion. Blood 105, 4314–4320 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    CAS  Article  Google Scholar 

  35. 35

    Schmidt, M., et al. A model for the detection of clonality in marked hematopoietic stem cells. Ann. NY Acad. Sci. 938, 146–155 (2001).

    CAS  Article  Google Scholar 

  36. 36

    Schmidt, M. et al. Polyclonal long-term repopulating stem cell clones in a primate model. Blood 100, 2737–2743 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Gerrits, A. et al. Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood 115, 2610–2618 (2010).

    CAS  Article  Google Scholar 

  38. 38

    Fox, D.T., Morris, L.X., Nystul, T. & Spradling, A.C. Lineage analysis of stem cells. in StemBook (The Stem Cell Research Community, 2008).

    Google Scholar 

  39. 39

    Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007).

    CAS  Article  Google Scholar 

  40. 40

    Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    CAS  Article  Google Scholar 

  41. 41

    Dor, Y., Brown, J., Martinez, O.I. & Melton, D.A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Samokhvalov, I.M., Samokhvalova, N.I. & Nishikawa, S. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446, 1056–1061 (2007).

    CAS  Article  Google Scholar 

  43. 43

    Smukler, S.R. et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 8, 281–293 (2011).

    CAS  Article  Google Scholar 

  44. 44

    Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    CAS  Article  Google Scholar 

  45. 45

    Snippert, H.J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    CAS  Article  Google Scholar 

  46. 46

    Tang, F., Lao, K. & Surani, M.A. Development and applications of single-cell transcriptome analysis. Nat. Methods 8, S9–S14 (2011).

    Article  Google Scholar 

  47. 47

    Itzkovitz, S. & van Oudenaarden, A. Validating transcripts with probes and imaging technology. Nat. Methods 8, S15–S22 (2011).

    Article  Google Scholar 

  48. 48

    Rubakhin, S.S., Romanova, E.V., Nemes, P. & Sweedler, J.V. Profiling metabolites and peptides in single cells. Nat. Methods 8, S23–S32 (2011).

    Article  Google Scholar 

  49. 49

    Billia, F., Barbara, M., McEwen, J., Trevisan, M. & Iscove, N.N. Resolution of pluripotential intermediates in murine hematopoietic differentiation by global complementary DNA amplification from single cells: confirmation of assignments by expression profiling of cytokine receptor transcripts. Blood 97, 2257–2268 (2001).

    CAS  Article  Google Scholar 

  50. 50

    Hansson, E.M., Lindsay, M.E. & Chien, K.R. Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell 5, 364–377 (2009).

    CAS  Article  Google Scholar 

  51. 51

    Bhatia, M. Developmental biology. Microenvironment mimicry. Science 329, 1024–1025 (2010).

    CAS  Article  Google Scholar 

  52. 52

    Lin, Y., Molter, J., Lee, Z. & Gerson, S.L. Bioluminescence imaging of hematopoietic stem cell repopulation in murine models. Methods Mol. Biol. 430, 295–306 (2008).

    CAS  Article  Google Scholar 

  53. 53

    Lee, Z., Dennis, J.E. & Gerson, S.L. Imaging stem cell implant for cellular-based therapies. Exp. Biol. Med. (Maywood) 233, 930–940 (2008).

    CAS  Article  Google Scholar 

  54. 54

    Eilken, H.M., Nishikawa, S. & Schroeder, T. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457, 896–900 (2009).

    CAS  Article  Google Scholar 

  55. 55

    Rieger, M.A., Hoppe, P.S., Smejkal, B.M., Eitelhuber, A.C. & Schroeder, T. Hematopoietic cytokines can instruct lineage choice. Science 325, 217–218 (2009).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kristin Hope or Mickie Bhatia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hope, K., Bhatia, M. Clonal interrogation of stem cells. Nat Methods 8, S36–S40 (2011). https://doi.org/10.1038/nmeth.1590

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing