Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells

Abstract

The mechanical rigidity of cells and adhesion forces between cells are important in various biological processes, including cell differentiation, proliferation and tissue organization. Atomic force microscopy has emerged as a powerful tool to quantify the mechanical properties of individual cells and adhesion forces between cells. Here we demonstrate an instrument that combines atomic force microscopy with a side-view fluorescent imaging path that enables direct imaging of cellular deformation and cytoskeletal rearrangements along the axis of loading. With this instrument, we directly observed cell shape under mechanical load, correlated changes in shape with force-induced ruptures and imaged formation of membrane tethers during cell-cell adhesion measurements. Additionally, we observed cytoskeletal reorganization and stress-fiber formation while measuring the contractile force of an individual cell. This instrument can be a useful tool for understanding the role of mechanics in biological processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of side-view AFM.
Figure 2: Measurement of adhesion between leukocyte and endothelial cell.
Figure 3: Contraction of U2OS cell against load.
Figure 4: Contractile force of U2OS cell exceeds force of adhesion to bottom surface.

Similar content being viewed by others

References

  1. Engler, A.J., Sen, S., Sweeney, H.L. & Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Paszek, M.J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10, 429–436 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Bausch, A.R., Moller, W. & Sackmann, E. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76, 573–579 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shao, J.Y. & Hochmuth, R.M. Micropipette suction for measuring piconewton forces of adhesion and tether formation from neutrophil membranes. Biophys. J. 71, 2892–2901 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Evans, E., Heinrich, V., Leung, A. & Kinoshita, K. Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. I. Membrane separation from the cytoskeleton. Biophys. J. 88, 2288–2298 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Desprat, N., Richert, A., Simeon, J. & Asnacios, A. Creep function of a single living cell. Biophys. J. 88, 2224–2233 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Wottawah, F. et al. Optical rheology of biological cells. Phys. Rev. Lett. 94, 098103–1–098103–4 (2005).

    Article  Google Scholar 

  9. Binnig, G., Quate, C.F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Radmacher, M., Fritz, M., Kacher, C.M., Cleveland, J.P. & Hansma, P.K. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70, 556–567 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alcaraz, J. et al. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 84, 2071–2079 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benoit, M., Gabriel, D., Gerisch, G. & Gaub, H.E. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat. Cell Biol. 2, 313–317 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Panorchan, P. et al. Single-molecule analysis of cadherin-mediated cell-cell adhesion. J. Cell Sci. 119, 66–74 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Charras, G.T. & Horton, M.A. Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys. J. 82, 2970–2981 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Canetta, E., Duperray, A., Leyrat, A. & Verdier, C. Measuring cell viscoelastic properties using a force-spectrometer: Influence of protein-cytoplasm interactions. Biorheology 42, 321–333 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Heinrich, V. & Ounkomol, C. Biophysics in reverse: Using blood cells to accurately calibrate force-microscopy cantilevers. Appl. Phys. Lett. 92, 153902–1–153902–3 (2008).

    Google Scholar 

  17. Ounkomol, C., Xie, H., Dayton, P.A. & Heinrich, V. Versatile horizontal force probe for mechanical tests on pipette-held cells, particles, and membrane capsules. Biophys. J. 96, 1218–1231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vestweber, D. Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol. Rev. 218, 178–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Girdhar, G. & Shao, J.Y. Simultaneous tether extraction from endothelial cells and leukocytes: Observation, mechanics, and significance. Biophys. J. 93, 4041–4052 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerszten, R.E. et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398, 718–723 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, X. et al. Atomic force microscopy measurement of leukocyte-endothelial interaction. Am. J. Physiol. Heart Circ. Physiol. 286, H359–H367 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Kunkel, E.J., Dunne, J.L. & Ley, K. Leukocyte arrest during cytokine-dependent inflammation in vivo. J. Immunol. 164, 3301–3308 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Derenyi, I., Julicher, F. & Prost, J. Formation and interaction of membrane tubes. Phys. Rev. Lett. 88, 238101–1–238101–4 (2002).

    Article  Google Scholar 

  24. Harris, A.K., Wild, P. & Stopak, D. Silicone-rubber substrata—new wrinkle in the study of cell locomotion. Science 208, 177–179 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, C.S. Mechanotransduction—a field pulling together? J. Cell Sci. 121, 3285–3292 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Hotulainen, P. & Lappalainen, P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chu, Y.S. et al. Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. J. Cell Biol. 167, 1183–1194 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parekh, S.H., Chaudhuri, O., Theriot, J.A. & Fletcher, D.A. Loading history determines the velocity of actin-network growth. Nat. Cell Biol. 7, 1219–1223 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.W. Shaevitz, M. Van Duijn, M.J. Rosenbluth, A. Crow and all members of the Fletcher laboratory for helpful discussions, and B. Zuchero (University of California San Francisco) for the gift of GFP-transfected U2OS cells used in initial experiments. This work was supported by a US National Science Foundation graduate research fellowship (O.C.); a US National Institutes of Health National Research Service Award, Hammond research fellowship and Hartwell biomedical research fellowship (W.A.L.), and a National Institutes of Health R01 grant (D.A.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A Fletcher.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 (PDF 3214 kb)

Supplementary Video 1

Side-view video of leukocyte shape during leukocyte cell-endothelial cell adhesion measurement. This video is taken from the experiment described in Figure 2. Video is composed of 41 images taken in intervals of 1 second. Scale bar, 10 μm. (MOV 2232 kb)

Supplementary Video 2

Side-view video of U2OS contraction. This video is taken from the experiment described in Figure 3. Images of GFP-actin are taken approximately every 30 seconds over 17 minutes. Scale bar, 10 μm. (MOV 4624 kb)

Supplementary Video 3

Side-view video of U2OS contraction experiment showing rupturing of adhesion to surface. As in the experiment described in Figure 4, the U2OS cell pulls the cantilever down towards the sample surface as it contracts, resulting in an increasing tensional force applied by the cantilever across the cell. Images of GFP-actin are taken approximately every 15 seconds over 63 minutes. Fibers are observed to form in the video, and de-adhesion occurs due to rupture of the adhesion between the U2OS cell and the fibronectin-coated surface. Scale bar, 10 μm. (MOV 2788 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhuri, O., Parekh, S., Lam, W. et al. Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat Methods 6, 383–387 (2009). https://doi.org/10.1038/nmeth.1320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing