Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO


The search for ferromagnetism above room temperature in dilute magnetic semiconductors has been intense in recent years. We report the first observations of ferromagnetism above room temperature for dilute (<4 at.%) Mn-doped ZnO. The Mn is found to carry an average magnetic moment of 0.16 μB per ion. Our ab initio calculations find a valance state of Mn2+ and that the magnetic moments are ordered ferromagnetically, consistent with the experimental findings. We have obtained room-temperature ferromagnetic ordering in bulk pellets, in transparent films 2–3 μm thick, and in the powder form of the same material. The unique feature of our sample preparation was the low-temperature processing. When standard high-temperature (T > 700 °C) methods were used, samples were found to exhibit clustering and were not ferromagnetic at room temperature. This capability to fabricate ferromagnetic Mn-doped ZnO semiconductors promises new spintronic devices as well as magneto-optic components.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2: Magnetization at 300 K for Zn0.978Mn0.022O pulsed-laser-deposited thin film on fused quartz.
Figure 3: HRTEM image and EELS spectra for a Zn(1−x)MnxO (x = 2.2 at.%) thin film.
Figure 4: Ferro- and paramagnetic resonance spectra for a nominal 2 at.% Mn-doped ZnO pellet.
Figure 5: Calculated density of states (DOS) for Zn0.958Mn0.042O, Fermi level is set at zero.


  1. 1

    Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).

    CAS  Article  Google Scholar 

  2. 2

    Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Matsumoto, Y. et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–856 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Ando, K. et al. Magneto-optical properties of ZnO-based dilute magnetic semiconductors. J. Appl. Phys. 89, 7284–7286 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Takamura, K., Matsukura, F., Chiba, D. & Hono, H. Magnetic properties of (Al,Ga,Mn)As. Appl. Phys. Lett. 81, 2590–2592 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Chambers, S.A. A potential role in spintronics. Mater. Today 34–39 (April 2002).

  7. 7

    Ohno, H., Matsukura, F. & Ohno, Y. Semiconductor spin electronics. JSAP Int. 5, 4–13 (2002).

    CAS  Google Scholar 

  8. 8

    Nazmul, M., Ahsan, S. & Tanaka, M. High ferromagnetic transition temperature (172K) in Mn δ-doped GaAs with p-type selective doping. Cond-mat/0208299 (2003).

  9. 9

    Ueda, K., Tabata, H. & Kawai, T. Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988–990 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Thaler, G.T. et al. Magnetic properties of n-GaMnN thin films. Appl. Phys. Lett. 80, 3964–3966 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Stampe, P.A., Kennedy, R.J., Yan, X. & Parker, J.S. Investigation of the cobalt distribution in TiO2:Co thin films. J. Appl. Phys. 92, 7114–7121 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Chambers, S.A. et al. Clusters and magnetism in epitaxial Co-doped TiO2 anatase. Appl. Phys. Lett. 82, 1257–1259 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Kim, J.H., Kim, H., Ihm, Y.E. & Choo, W.K. Magnetic properties of epitaxially grown semiconducting Zn1-xCoxO thin film by pulsed laser deposition. J. Appl. Phys. 92, 6066–6071 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Fukumura, T., Jin, Z., Ohtomo, A., Koinuma, H. & Kawasaki, M. An oxide-diluted magnetic semiconductor: Mn-doped ZnO. Appl. Phys. Lett. 75, 3366–3368 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Fukumura, T. et al. Magnetic properties of Mn-doped ZnO. Appl. Phys. Lett. 78, 958–960 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Jung, S.W. et al. Ferromagnetic properties of Zn1-xMnxO epitaxial thin films. Appl. Phys. Lett. 80, 4561–4563(2002).

    CAS  Article  Google Scholar 

  17. 17

    Tiwari, A. et al. Structural, optical and magnetic properties of diluted magnetic semiconducting Zn1-xMnxO films. Solid State Commun. 121, 371–374 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Egerton, R.F. Electron Energy-Loss Spectroscopy in the Electron Microscope 370 (Plenum, New York and London, 1996).

    Book  Google Scholar 

  19. 19

    Kurata, H. & Colliex, C. Electron energy-loss core-edge structure in manganese oxides. Phys. Rev. B 48, 2102–2108 (1993).

    CAS  Article  Google Scholar 

  20. 20

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Article  Google Scholar 

  21. 21

    Kresse, G. & Hafner, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Blöchel, P.E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  23. 23

    Perdew, J.P. & Wang, Y. Accurate and simple analytic representation of the electron- gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    CAS  Article  Google Scholar 

  24. 24

    Sato, K. & Katayama-Yoshida, H. First principles materials design for semiconductors spintronics. Semicond. Sci. Technol. 17, 367–376 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Korzhavy, P.A. et al. Defect-induced magnetic structure in (Ga1-xMnx)As. Phys. Rev. Lett. 88, 187202 (2002).

    Article  Google Scholar 

Download references


R.A., J.G. and B.J. acknowledge the support from the ATOMICS and EXCITING programmes by the Swedish Strategic Foundation and the EU network. Some of the theoretical calculations were carried out at the National Supercomputer Centre at Linköping, Sweden. P.S., A.G. and K.V.R. acknowledge partial support for this research from the Swedish Agency VINNOVA. G.G. would like to acknowledge a visiting fellowship from the Swedish foundation STINT, and the hospitality during her stay at the Department of Materials Science of the Royal Institute of Technology. The use of the Center for High Resolution Electron Microscopy (CHREM) is gratefully acknowledged. Finally, we wish to thank very much the excellent and fruitful exchanges we have had with the reviewers of this manuscript. It has been the most enjoyable part of the scientific work.

Author information



Corresponding author

Correspondence to K. V. Rao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 330 kb)

Supplementary Information, Fig. S3

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharma, P., Gupta, A., Rao, K. et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nature Mater 2, 673–677 (2003).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing