Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Mott–Hubbard insulating state and orbital degeneracy in the superconducting C603− fulleride family

Abstract

Electron correlation controls the properties of important materials such as superconducting and magnetoresistive transition metal oxides and heavy fermion systems. The role of correlation in driving metal-to-insulator transitions assumes further importance because many superconducting materials are located close to such transitions. The nature of the insulating ground state often reveals the dominant interactions in the superconductor, as shown by the importance of the properties of La2CuO4 in understanding the high-temperature-superconducting cuprates. The A3C60 alkali metal fullerides are superconducting systems in which the role of correlation in both the normal state and the superconducting pairing mechanism is controversial, because no magnetic insulator comparable to the superconducting materials has been identified. We describe the first example of a cubic C603− system with degenerate orbitals that adopts the Mott–Hubbard insulating localized electron ground state. Electron repulsion is identified as the interaction that is suppressed on the transition to metallic and superconducting behaviour in the fullerides. This observation is combined with ab initio calculations to demonstrate that it is the orbital degeneracy that allows the superconducting cubic A3C60 fullerides to remain metallic while provoking electron localization in systems with lower symmetry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The body-centred-cubic (b.c.c.) unit cell of Li3(NH3)6C60 1 (space group Im3̄, lattice parameter a = 11.9230(7) Å).
Figure 2: Magnetic susceptibility versus temperature for 1 measured in a 7 T field.
Figure 3: The low-temperature magnetic transition in 1.
Figure 4: The density of states of the t1u band derived from the fulleride anion overlaps by the density functional theory (DFT) band structure calculations in 1 and K3C60.
Figure 5: The electronic properties of C603− fullerides with structures derived from face-centred-cubic (f.c.c.; square and diamond symbols) and b.c.c. sphere packings (b.c.c.-derived phases are denoted with circles).

Similar content being viewed by others

References

  1. Roy, A.S., Hoekstra, A.F.T., Rosenbaum, T.F. & Griessen, R. Quantum fluctuations and the closing of the coulomb gap in a correlated insulator. Phys. Rev. Lett. 89, 276402 (2002).

    Article  CAS  Google Scholar 

  2. Sachdev, S. Spin and charge order in Mott insulators and d-wave superconductors. J. Phys. Chem. Solids 63, 2269–2276 (2002).

    Article  CAS  Google Scholar 

  3. Rosseinsky, M.J. Recent developments in the chemistry and physics of metal fullerides. Chem. Mater. 10, 2665–2685 (1998).

    Article  CAS  Google Scholar 

  4. Margadonna, S. & Prassides, K. Recent advances in fullerene superconductivity. J. Solid State Chem. 168, 639–652 (2002).

    Article  CAS  Google Scholar 

  5. Gunnarsson, O. Superconductivity in fullerides. Rev. Mod. Phys. 69, 575–606 (1997).

    Article  CAS  Google Scholar 

  6. Chakravarty, S. & Kivelson, S.A. Electronic mechanism of superconductivity in the cuprates, C60, and polyacenes. Phys. Rev. B 64, 1–9 (2001).

    Article  Google Scholar 

  7. Iwasa, Y. & Takenobu, T. Superconductivity, Mott–Hubbard states, and molecular orbital order in intercalated fullerides. J. Phys. Condens. Matter 15, R495–R519 (2003).

    Article  CAS  Google Scholar 

  8. Fleming, R.M. et al. Relation of structure and superconducting transition temperatures in A3C60 . Nature 352, 787–788 (1991).

    Article  CAS  Google Scholar 

  9. Satpathy, S. et al. Conduction band structure of alkali-metal-doped C60 . Phys. Rev. B 46, 1773–1793 (1992).

    Article  CAS  Google Scholar 

  10. Shirley, E.L. & Louie, S.G. Electron excitations in solid C60: Energy gap, band dispersions and effects of orientational disorder. Phys. Rev. Lett. 71, 133–136 (1993).

    Article  CAS  Google Scholar 

  11. Bruhwiler, P.A., Maxwell, A.J., Nilsson, A., Martensson, N. & Gunnarsson, O. Auger and photoelectron study of the Hubbard U in C60, K3C60 and K6C60 . Phys. Rev. B 48, 18296–18299 (1993).

    Article  CAS  Google Scholar 

  12. Lof, R.W., Veenendaal, M.A.v., Koopmans, B., Jonkman, H.T. & Sawatzky, G.A. Band-gap, excitons and coulomb interaction in solid C60 . Phys. Rev. Lett. 68, 3924–3927 (1992).

    Article  CAS  Google Scholar 

  13. Gunnarsson, O., Koch, E. & Martin, R.M. Mott transition in degenerate Hubbard models. Phys. Rev. B 54, R11026–R11029 (1996).

    Article  CAS  Google Scholar 

  14. Gunnarsson, O., Koch, E. & Martin, R.M. Mott-Hubbard insulators for systems with orbital degeneracy. Phys. Rev. B 56, 1146–1152 (1997).

    Article  CAS  Google Scholar 

  15. Florens, S., Georges, A., Kotliar, G. & Parcollet, O. Mott transition at large orbital degeneracy: Dynamical mean-field theory. Phys. Rev. B 66, 1–2 (2002).

    Google Scholar 

  16. Han, J.E., Koch, E. & Gunnarsson, O. Metal-insulator transitions: Influence of lattice structure, Jahn-Teller Effect, and Hund's rule coupling. Phys. Rev. Lett. 84, 1276–1279 (2000).

    Article  CAS  Google Scholar 

  17. Fullagar, W.K., Reynolds, P.W. & White, J.W. Lithium and sodium fullerides prepared in liquid ammonia. Solid State Commun. 104, 23–27 (1997).

    Article  CAS  Google Scholar 

  18. Palstra, T.T.M. et al. Superconductivity at 40K in cesium doped Cs3C60 . Solid State Commun. 93, 327–330 (1995).

    Article  CAS  Google Scholar 

  19. Maniwa, Y. et al. 13C NMR and static magnetic susceptibility in C60 superconductors: possible influence of Kondo impurity. Phys. Rev. B 58, 11603–11606 (1998).

    Article  CAS  Google Scholar 

  20. Reed, C.A. & Bolskar, R.D. Discrete fulleride anions and fullerenium cations. Chem. Rev. 100, 1075–1120 (2000).

    Article  CAS  Google Scholar 

  21. Tou, H., Maniwa, Y., Iwasa, Y., Shimoda, H. & Mitani, T. NMR evidence for Mott–Hubbard localization in (NH3)K3C60 . Phys. Rev. B 62, 775–778 (2000).

    Article  Google Scholar 

  22. Dahlke, P., Denning, M.S., Henry, P.F. & Rosseinsky, M.J. Superconductivity in expanded C603− fullerides. J. Am. Chem. Soc. 122, 12352–12361 (2000).

    Article  CAS  Google Scholar 

  23. Kitano, H. et al. Evidence for insulating behavior in the electric conduction of (NH3)K3C60 systems. Phys. Rev. Lett. 88, 096401 (2002).

    Article  CAS  Google Scholar 

  24. Rosseinsky, M.J., Murphy, D.W., Fleming, R.M. & Zhou, O. Intercalation of ammonia into K3C60 . Nature 364, 425–427 (1993).

    Article  CAS  Google Scholar 

  25. Takenobu, T., Muro, T., Iwasa, Y. & Mitani, T. Antiferromagnetism and phase diagram in ammoniated alkali fulleride salts. Phys. Rev. Lett. 85, 381–384 (2000).

    Article  CAS  Google Scholar 

  26. Manini, N., Santoro, G.E., Corso, A.D. & Tosatti, E. Sensitivity of the Mott transition to noncubic splitting of the orbital degeneracy: Application to NH3K3C60 . Phys. Rev. B 66, 1–7 (2002).

    Article  Google Scholar 

  27. Denning, M.S., Dennis, T.J.S., Rosseinsky, M.J. & Shinohara, H. K3+δC84 - higher fullerene analogues of the A3C60 superconductors. Chem. Mater. 13, 4753–4759 (2001).

    Article  CAS  Google Scholar 

  28. Denning, M.S. et al. Close-packed C703− phases - synthesis, structure and electronic properties. J. Am. Chem. Soc. 124, 5570–5580 (2002).

    Article  CAS  Google Scholar 

  29. Capone, M., Fabrizio, M., Castellani, C. & Tosatti, E. Strongly correlated superconductivity. Science 296, 2364–2366 (2002).

    Article  CAS  Google Scholar 

  30. Han, J.E., Gunnarsson, O. & Crespi, V.H. Strong superconductivity with local Jahn-Teller phonons in C60 solids. Phys. Rev. Lett. 90, 167006 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the referees for useful suggestions. The SQUID magnetometer was funded by the EPSRC (Engineering and Physical Sciences Research Council) UK, under GR/M91242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Rosseinsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. S1

Supplementary Fig. S2 (PDF 303 kb)

Supplementary Fig. S3

Supplementary Fig. S4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durand, P., Darling, G., Dubitsky, Y. et al. The Mott–Hubbard insulating state and orbital degeneracy in the superconducting C603− fulleride family. Nature Mater 2, 605–610 (2003). https://doi.org/10.1038/nmat953

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat953

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing