Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biomimetic synthesis and patterning of silver nanoparticles

Abstract

The creation of nanoscale materials for advanced structures has led to a growing interest in the area of biomineralization. Numerous microorganisms are capable of synthesizing inorganic-based structures1,2. For example, diatoms use amorphous silica as a structural material3, bacteria synthesize magnetite (Fe3O4) particles and form silver nanoparticles4, and yeast cells synthesize cadmium sulphide nanoparticles5. The process of biomineralization and assembly of nanostructured inorganic components into hierarchical structures has led to the development of a variety of approaches that mimic the recognition and nucleation capabilities found in biomolecules for inorganic material synthesis6,7,8,9,10. In this report, we describe the in vitro biosynthesis of silver nanoparticles using silver-binding peptides identified from a combinatorial phage display peptide library.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Absorption spectra of biosynthetic silver nanoparticles.
Figure 2: Characterization of biosynthetic silver nanoparticles.
Figure 3: Model for silver crystal formation by silver-binding peptides.
Figure 4: Arrays of biosynthesized silver particles formed on a glass substrate using micromoulding in capillaries.

References

  1. Lowenstam, H.A. Minerals formed by organisms. Science 211, 1126–1130 (1981).

    Article  CAS  Google Scholar 

  2. Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  3. Cha, J.N. et al. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl Acad. Sci. USA 96, 361–365 (1999).

    Article  CAS  Google Scholar 

  4. Klaus, T., Joerger, R., Olsson, E. & Granqvist, C.G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl Acad. Sci. USA 96, 13611–13614 (1999).

    Article  CAS  Google Scholar 

  5. Dameron, C.T. et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338, 596–597 (1989).

    Article  CAS  Google Scholar 

  6. Brown, S., Sarikaya, M. & Johnson, E. A genetic analysis of crystal growth. J. Mol. Biol. 299, 725–735 (2000).

    Article  CAS  Google Scholar 

  7. Cha, J.N., Stucky, G.D., Morse, D.E. & Deming, T.J. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403, 289–292 (2000).

    Article  CAS  Google Scholar 

  8. Naik, R.R., Brott, L.L., Clarson, S.J. & Stone, M.O. Silica-precipitating peptides isolated from a combinatorial phage display library. J. Nanosci. Nanotech. 2, 95–100 (2002).

    Article  CAS  Google Scholar 

  9. Douglas, T. et al. Protein engineering of a viral cage for constrained nanometrials synthesis. Adv. Mater. 14, 415–418 (2002).

    Article  CAS  Google Scholar 

  10. Lee, S.-W., Mao, C., Flynn, C.E. & Belcher, A.M. Ordering of quantum dots using genetically engineered viruses. Science 296, 892–895 (2002).

    Article  CAS  Google Scholar 

  11. Kroger, N., Deutzmann, R. & Sumper, M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286, 1129–1132 (1999).

    Article  CAS  Google Scholar 

  12. Aizenberg J., Lambert, G., Addadi, L. & Weiner, S. Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Adv. Mater. 8, 222–225 (1996).

    Article  CAS  Google Scholar 

  13. Brott, L.L. et al. Ultrafast holographic patterning of biocatalytically-formed silica. Nature 413, 291–293 (2001).

    Article  CAS  Google Scholar 

  14. Brown, S. Metal-recognition by repeating polypeptides. Nature Biotechnol. 15, 269–272 (1997).

    Article  CAS  Google Scholar 

  15. Gaskin, D.J.H., Starck, K. & Vulfson, E.N. Identification of inorganic crystal-specific sequences using phage display combinatorial library of short peptides: A feasibility study. Biotech. Lett. 22, 1211–1216 (2000).

    Article  CAS  Google Scholar 

  16. Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F. & Belcher, A.M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665–668 (2000).

    Article  CAS  Google Scholar 

  17. Schatz, G.C. & Van Duyne, R.P. Handbook of Vibrational Spectroscopy (eds. Chalmers, J.M. & Griffiths, P.R.) (Wiley, New York, 2002).

    Google Scholar 

  18. Aizenberg J., Lambert, G., Weiner, S. & Addadi, L. Factors involved in the formation of amorphous and crystalline calcium carbonate: a study of an ascidian skeleton. J. Am. Chem. Soc. 124, 32–39 (2001).

    Article  Google Scholar 

  19. Gruen, L.C. Interaction of amino acids with silver ions. Biochim. Biophys. Acta 386, 270–274 (1975).

    Article  CAS  Google Scholar 

  20. Kim, E., Xia, Y. & Whitesides, G.M. Polymer microstructures formed by moulding in capillaries. Nature 376, 581–584 (1995).

    Article  CAS  Google Scholar 

  21. Delamarche, E., Bernard, A., Schmid, H., Michel, B. & Biebuyck, H. Patterned delivery of immunoglobulins to surfaces using microfludic networks. Science 276, 779–781 (1997).

    Article  CAS  Google Scholar 

  22. Weissbuch, I., Addadi, L., Lahav, M. & Leiserowitz, L. Molecular recognition at crystal interfaces. Science 253, 637–645 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds provided by the Air Force Office of Scientific Research (AFOSR). We thank Rich Vaia and Bob Wheeler for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morley O. Stone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Supplementary Information Table S1 (PDF 319 kb)

Supplementary Information Fig. S1 - S5

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Naik, R., Stringer, S., Agarwal, G. et al. Biomimetic synthesis and patterning of silver nanoparticles. Nature Mater 1, 169–172 (2002). https://doi.org/10.1038/nmat758

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat758

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing