Article

Isotope engineering of van der Waals interactions in hexagonal boron nitride

  • Nature Materials volume 17, pages 152158 (2018)
  • doi:10.1038/nmat5048
  • Download Citation
Received:
Accepted:
Published:

Abstract

Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  • Subscribe to Nature Materials for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    & Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 15, 261–267 (1947).

  2. 2.

    & On the interpretation of deuterium kinetic isotope effects in C-H bond functionalizations by transition-metal complexes. Angew. Chem. Int. Ed. 51, 3066–3072 (2012).

  3. 3.

    & Isotope Effects in Chemistry and Biology (CRC Press, 2006).

  4. 4.

    Isotope effect in the superconductivity of mercury. Phys. Rev. 78, 477 (1950).

  5. 5.

    & Isotope effects on the optical spectra of semiconductors. Rev. Mod. Phys. 77, 1173–1224 (2005).

  6. 6.

    A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

  7. 7.

    et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

  8. 8.

    & Isotope engineering of silicon and diamond for quantum computing and sensing applications. MRS Commun. 4, 143–157 (2014).

  9. 9.

    & Van der Waals heterostructures. Nature 499, 419–425 (2013).

  10. 10.

    , & Interpretation of intermolecular geometric isotope effect in hydrogen bonds: nuclear orbital plus molecular orbital study. J. Phys. Chem. A 115, 1433–1439 (2011).

  11. 11.

    , & Development of boron-based materials for nuclear applications. BARC Newsletter 313, 14–22 (2010).

  12. 12.

    , , & Boron neutron capture therapy for cancer. Realities and prospects. Cancer 70, 2995–3007 (1992).

  13. 13.

    & Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride. Phys. Rev. B 84, 155421 (2011).

  14. 14.

    et al. Nat. Mater. (2017).

  15. 15.

    , , , & Optimization of NiCr flux growth for hexagonal boron nitride single crystals. J. Crystal Growth 393, 114–118 (2014).

  16. 16.

    , , & Temperature dependence of Raman-active phonons and anharmonic interactions in layered hexagonal BN. Phys. Rev. B 94, 155435 (2016).

  17. 17.

    , , , & Phonons and fundamental gap in ZnSe: effects of the isotopic composition. Phys. Rev. B 59, 2749–2759 (1999).

  18. 18.

    , , & Lattice dynamics and Raman spectra of isotopically mixed diamond. Phys. Rev. B 45, 7171–7182 (1992).

  19. 19.

    , & Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

  20. 20.

    , , , & Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photon. 3, 591–594 (2009).

  21. 21.

    et al. Hexagonal boron nitride as a new ultraviolet luminescent material and its application—Fluorescence properties of hBN single-crystal powder. Diam. Relat. Mater. 20, 849–852 (2011).

  22. 22.

    , & Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photon. 10, 262–266 (2016).

  23. 23.

    et al. Phonon symmetries in hexagonal boron nitride probed by incoherent light emission. 2D Mater. 4, 11004 (2017).

  24. 24.

    et al. Overtones of interlayer shear modes in the phonon-assisted emission spectrum of hexagonal boron nitride. Phys. Rev. B 95, 45207 (2017).

  25. 25.

    , & Intervalley scattering in hexagonal boron nitride. Phys. Rev. B 93, 35207 (2016).

  26. 26.

    , & Electron-phonon renormalization of the direct band gap of diamond. Phys. Rev. Lett. 105, 265501 (2010).

  27. 27.

    , , , & Temperature dependence of the energy bandgap of two-dimensional hexagonal boron nitride probed by excitonic photoluminescence. J. Appl. Phys. 115, 53503 (2014).

  28. 28.

    & Theory of the temperature dependence of electronic band structures. J. Phys. C 9, 2305–2312 (1976).

  29. 29.

    , & Temperature dependence of the interband critical-point parameters of InP. Phys. Rev. B 36, 4813–4820 (1987).

  30. 30.

    , & Isotope and temperature shifts of direct and indirect band gaps in diamond-type semiconductors. Phys. Rev. B 45, 3376–3385 (1992).

  31. 31.

    et al. The shear mode of multilayer graphene. Nat. Mater. 11, 294–300 (2012).

  32. 32.

    & Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84, 155413 (2011).

  33. 33.

    , , , & Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range. Appl. Phys. A 75, 431–435 (2002).

  34. 34.

    , & The anisotropic thermal expansion of boron nitride. Philos. Mag. 32, 847–857 (1975).

  35. 35.

    & Low-frequency phonons of few-layer graphene within a tight-binding model. Phys. Rev. B 90, 245429 (2014).

  36. 36.

    & Sliding mechanisms in multilayered hexagonal boron nitride and graphene: the effects of directionality, thickness, and sliding constraints. Phys. Rev. Lett. 114, 096101 (2015).

  37. 37.

    et al. Bending modes, elastic constants and mechanical stability of graphitic systems. Carbon 49, 62–69 (2011).

  38. 38.

    et al. Vibrational properties of hexagonal boron nitride: inelastic X-ray scattering and ab initio calculations. Phys. Rev. Lett. 98, 95503 (2007).

  39. 39.

    et al. Exciton-phonon interaction in the strong-coupling regime in hexagonal boron nitride. Phys. Rev. B 95, 201202 (2017).

  40. 40.

    , & The maximum-entropy method in superspace. Acta Crystallogr. A 59, 459–469 (2003).

  41. 41.

    , & Charge density of hexagonal boron nitride using synchrotron radiation powder data by maximum entropy method. J. Phys. Chem. Phys. Sol. 58, 177–183 (1997).

  42. 42.

    , & First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys. Rev. B 79, 115442 (2009).

  43. 43.

    , , & Bulk and surface electronic structure of hexagonal boron nitride. Phys. Rev. B 36, 6105–6111 (1987).

  44. 44.

    & Isotope effect on anharmonic thermal atomic vibration and refinement of 12C and 13C diamond. Acta Crystallogr. B 52, 232–238 (1996).

  45. 45.

    & in The Euroschool on Exotic Beams Vol. IV (eds Scheidenberger, C. & Pfützner, M.) 233 (Lecture notes in Physics 879, Springer, 2014).

  46. 46.

    , , & Fundamental change in the nature of chemical bonding by isotopic substitution. Angew. Chem. Int. Ed. 53, 13706–13709 (2014).

  47. 47.

    & Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal. Phys. Rev. Lett. 113, 055701 (2014).

  48. 48.

    et al. Strong local-field enhancement of the nonlinear soft-mode response in a molecular crystal. Phys. Rev. Lett. 119, 097404 (2017).

  49. 49.

    , & Isotopic homojunction band engineering from diamond. Science 324, 1425–1428 (2009).

  50. 50.

    et al. Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit. Science 355, 503–507 (2017).

Download references

Acknowledgements

We gratefully acknowledge C. L’Henoret for his technical support at the mechanics workshop, and A. Dréau, V. Jacques and E. Rousseau for fruitful discussions. This work and the PhD funding of T.Q.P.V. were financially supported by the network GaNeX (ANR-11-LABX-0014). GaNeX belongs to the publicly funded Investissements d’Avenir program managed by the French ANR agency. G.C. is member of ‘Institut Universitaire de France’. B.G. acknowledges the Russian Megagrant program (14.W03.31.0011) at the Ioffe Institute, Saint Petersburg, Russia. This work was also supported by the Spanish MINECO/FEDER under contract MAT2015-71305-R. The hBN crystal growth is based upon work supported by the National Science Foundation under Grant No. CMMI 1538127.

Author information

Affiliations

  1. Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France

    • T. Q. P. Vuong
    • , T. Michel
    • , P. Valvin
    • , G. Cassabois
    •  & B. Gil
  2. Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA

    • S. Liu
    •  & J. H. Edgar
  3. Institut Européen des Membranes, UMR 5635 CNRS-Univ. Montpellier-ENSCM, 34095 Montpellier, France

    • A. Van der Lee
  4. Institut Jaume Almera, Consejo Superior de Investigaciones Científicas (ICTJA-CSIC), 08028 Barcelona, Spain

    • R. Cuscó
    •  & L. Artús

Authors

  1. Search for T. Q. P. Vuong in:

  2. Search for S. Liu in:

  3. Search for A. Van der Lee in:

  4. Search for R. Cuscó in:

  5. Search for L. Artús in:

  6. Search for T. Michel in:

  7. Search for P. Valvin in:

  8. Search for J. H. Edgar in:

  9. Search for G. Cassabois in:

  10. Search for B. Gil in:

Contributions

S.L. and J.H.E. synthesized the samples. T.Q.P.V., P.V. and G.C. performed photoluminescence spectroscopy. A.V.d.L. the X-ray diffraction measurements. R.C., L.A. and T.M. the Raman scattering experiments. All authors contributed to the interpretation of the results. The project was initiated by B.G. and the manuscript was written by G.C.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to G. Cassabois.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information