Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

One-pot synthesis of silanol-free nanosized MFI zeolite

Abstract

The synthesis of nanostructured zeolites enables modification of catalytically relevant properties such as effective surface area and diffusion path length. Nanostructured zeolites may be synthesized either in alkaline media, and so contain significant numbers of hydrophilic silanol groups, or in expensive and harmful fluoride-containing media. Here, we report and characterize, using a combination of experimental and theoretical techniques, the one-pot synthesis of silanol-free nanosized MFI-type zeolites by introducing atomically dispersed tungsten; this prevents silanol group occurrence by forming flexible W–O–Si bridges. These W–O–Si bonds are more stable than Si–O–Si in the all-silica MFI zeolite. Tungsten incorporation in nanosized MFI crystals also modifies other properties such as structural features, hydrophobicity and Lewis acidity. The effect of these is illustrated on the catalytic epoxidation of styrene and separation of CO2 and NO2. Silanol-free nanosized W-MFI zeolites open new perspectives for catalytic and separation applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Powder XRD patterns of nanosized zeolites after calcination.
Figure 2: Solid-state 29Si MAS NMR spectra
Figure 3: FTIR spectra and local structure.
Figure 4: FTIR spectra after pyridine adsorption at 100, 200, and 300 °C.
Figure 5: HRTEM images of nanosized zeolites at different magnifications.
Figure 6: Applications of nanosized zeolites.

Similar content being viewed by others

References

  1. Martinez, C. & Corma, A. Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coord. Chem. Rev. 255, 1558–1580 (2011).

    Article  CAS  Google Scholar 

  2. Mintova, S., Jaber, M. & Valtchev, V. Nanosized microporous crystals: emerging applications. Chem. Soc. Rev. 44, 7207–7233 (2015).

    Article  CAS  Google Scholar 

  3. Chezeau, J. M., Delmotte, L. & Guth, J. L. Influence of synthesis conditions and postsynthesis treatments on the nature and quantity of structural defects in highly siliceous MFI zeolites: a high-resolution solid-state 29Si N.M.R. study. Zeolites 11, 598–606 (1991).

    Article  CAS  Google Scholar 

  4. Guth, J. L., Kessler, H. & Wey, R. New route to pentasil-type zeolites using a non alkaline medium in the presence of fluoride ions. Stud. Surf. Sci. Catal. 28, 121–128 (1986).

    Article  CAS  Google Scholar 

  5. Burel, L. & Tuel, A. Nanozeolites: new strategies for designing ultra small silicalite crystals with very few framework defects. Micropor. Mesopor. Mater. 174, 90–99 (2013).

    Article  CAS  Google Scholar 

  6. Qin, Z. et al. Comparative study of nano-ZSM-5 catalysts synthesized in OH and F media. Adv. Funct. Mater. 24, 257–264 (2014).

    Article  CAS  Google Scholar 

  7. Rojas, A., Martínez-Morales, E., Zicovich-Wilson, C. M. & Camblor, M. A. Zeolite synthesis in fluoride media: structure direction toward ITW by small methylimidazolium cations. J. Am. Chem. Soc. 134, 2255–2263 (2012).

    Article  CAS  Google Scholar 

  8. Moliner, M. Direct synthesis of functional zeolitic materials. ISRN Mater. Sci. 2012, 789525 (2012).

    Article  Google Scholar 

  9. Clerici, M. G. & Domine, M. E. in Liquid Phase Oxidation via Heterogeneous Catalysis (eds Clerici, M. G. & Kholdeeva, O. A.) Chapter 2 (John Wiley, 2013).

    Book  Google Scholar 

  10. Taramasso, M., Perego, G. & Notari, B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US patent 4,410,501 A (1983).

  11. Ding, W., Meitzner, G. D., Marler, D. O. & Iglesia, E. Synthesis, structural characterization, and catalytic properties of tungsten-exchanged H-ZSM5. J. Phys. Chem. B 105, 3928–3936 (2001).

    Article  CAS  Google Scholar 

  12. Mintova, S., Talapaneni, S., Grand, J. & Gilson, J.-P. Method for the preparation of defect-free nanosized synthetic zeolite materials. WO patent 2,017,068,387 A1 (2017).

  13. Figueras, F. et al. Influence of the coordination on the catalytic properties of supported W catalysts. J. Catal. 226, 25–31 (2004).

    Article  CAS  Google Scholar 

  14. Scarano, D. et al. Fourier-transform infrared and Raman spectra of pure and Al-, B-, Ti- and Fe-substituted silicalites: stretching-mode region. J. Chem. Soc. Faraday Trans. 89, 4123–4130 (1993).

    Article  CAS  Google Scholar 

  15. Rohrig, C. & Gies, H. A new zincosilicate zeolite with nine-ring channels. Angew. Chem. Int. Ed. Engl. 34, 63–65 (1995).

    Article  Google Scholar 

  16. Axon, S. A. & Klinowski, J. Synthesis and characterization of defect-free crystals of MFI-type zeolites. Appl. Catal. A 81, 27–34 (1992).

    Article  CAS  Google Scholar 

  17. Engelhardt, G. & Michel, D. High Resolution Solid State NMR of Silicates and Zeolites (Wiley, 1987).

    Google Scholar 

  18. Camblor, M. A. & Davis, M. E. 29Si MAS NMR spectroscopy of tectozincosilicates. J. Phys. Chem. 98, 13151–13156 (1994).

    Article  CAS  Google Scholar 

  19. Barbera, K., Bonino, F., Bordiga, S., Janssens, T. V. W. & Beato, P. Structure–deactivation relationship for ZSM-5 catalysts governed by framework defects. J. Catal. 280, 196–205 (2011).

    Article  CAS  Google Scholar 

  20. Martin, C., Malet, P., Solana, G. & Rives, V. Structural analysis of silica-supported tungstates. J. Phys. Chem. B 102, 2759–2766 (1998).

    Article  CAS  Google Scholar 

  21. Wong, K. N. & Colson, S. D. The FT-IR spectra of pyridine and pyridine-d5. J. Mol. Spectrosc. 104, 129–151 (1984).

    Article  CAS  Google Scholar 

  22. Ennaert, T. et al. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Biomass. Chem. Soc. Rev. 45, 584–611 (2016).

    Article  CAS  Google Scholar 

  23. Ravenelle, R. M. et al. Stability of zeolites in hot liquid water. J. Phys. Chem. C 114, 19582–19595 (2010).

    Article  CAS  Google Scholar 

  24. Zhang, L., Chen, K., Chen, B., White, J. L. & Resasco, D. E. Factors that determine zeolite stability in hot liquid water. J. Am. Chem. Soc. 137, 11810–11819 (2015).

    Article  CAS  Google Scholar 

  25. Prodinger, S. et al. Improving stability of zeolites in aqueous phase via selective removal of structural defects. J. Am. Chem. Soc. 138, 4408–4415 (2016).

    Article  CAS  Google Scholar 

  26. Frisch, M. J. et al. Gaussian 09 (Gaussian, 2009).

    Google Scholar 

  27. Andrae, D., Haeussermann, U., Dolg, M., Stoll, H. & Preuss, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 77, 123–141 (1990).

    Article  CAS  Google Scholar 

  28. Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3094 (2005).

    Article  CAS  Google Scholar 

  29. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. J. Phys. Rev. B 49, 14251–14270 (1994).

    Article  CAS  Google Scholar 

  30. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  31. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13250 (1992).

    Article  CAS  Google Scholar 

  32. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7896 (1990).

    Article  CAS  Google Scholar 

  33. Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245–8257 (1994).

    Article  CAS  Google Scholar 

  34. Jeanvoine, Y., Angyan, J., Kresse, G. & Hafner, J. Brønsted acid sites in HSAPO-34 and chabazite: an ab initio structural study. J. Phys. Chem. B 102, 5573–5580 (1998).

    Article  CAS  Google Scholar 

  35. Baerlocher, C. & McCusker, L. B. Database of Zeolite Structures; http://www.iza-structure.org/databases

Download references

Acknowledgements

The financial support from the Region of Lower Normandy is acknowledged. The computational work was supported by the Material Networking project (GA 692146).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. J.G., S.N.T. and S.M. designed and performed experiments. A.V., C.F. and E.D. performed the NMR study (29Si, 1H, 23Na NMR). H.A.A. and G.N.V. carried out the theoretical calculations. R.R. performed the HRTEM and P.B. the XRD and Rietveld refinement. S.M., J.G., V.V. and J.-P.G. analysed output data, wrote the manuscript and financed the project.

Corresponding author

Correspondence to Svetlana Mintova.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grand, J., Talapaneni, S., Vicente, A. et al. One-pot synthesis of silanol-free nanosized MFI zeolite. Nature Mater 16, 1010–1015 (2017). https://doi.org/10.1038/nmat4941

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4941

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing