Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes

Abstract

Printable elastic conductors promise large-area stretchable sensor/actuator networks for healthcare, wearables and robotics. Elastomers with metal nanoparticles are one of the best approaches to achieve high performance, but large-area utilization is limited by difficulties in their processability. Here we report a printable elastic conductor containing Ag nanoparticles that are formed in situ, solely by mixing micrometre-sized Ag flakes, fluorine rubbers, and surfactant. Our printable elastic composites exhibit conductivity higher than 4,000 S cm−1 (highest value: 6,168 S cm−1) at 0% strain, and 935 S cm−1 when stretched up to 400%. Ag nanoparticle formation is influenced by the surfactant, heating processes, and elastomer molecular weight, resulting in a drastic improvement of conductivity. Fully printed sensor networks for stretchable robots are demonstrated, sensing pressure and temperature accurately, even when stretched over 250%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes.
Figure 2: Electrical characteristics of elastic conductors with different formulations.
Figure 3: Stretchable and fully printed sensor networks for stretchable robotics.

Similar content being viewed by others

References

  1. Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014).

    Article  CAS  Google Scholar 

  2. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  Google Scholar 

  3. Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004).

    Article  CAS  Google Scholar 

  4. Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).

    Article  CAS  Google Scholar 

  5. Menguc, Y. et al. Wearable soft sensing suit for human gait measurement. Int. J. Rob. Res. 33, 1748–1764 (2014).

    Article  Google Scholar 

  6. Tee, B. C.-K. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015).

    Article  CAS  Google Scholar 

  7. Dickey, M. D. et al. Eutectic gallium–indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18, 1097–1104 (2008).

    Article  CAS  Google Scholar 

  8. Chiechi, R. C., Weiss, E. A., Dickey, M. D. & Whitesides, G. M. Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem. Int. Ed. 47, 142–144 (2008).

    Article  CAS  Google Scholar 

  9. Hirsch, A., Michaud, H. O., Gerratt, A. P., de Mulatier, S. & Lacour, S. P. Intrinsically stretchable biphasic (solid–liquid) thin metal films. Adv. Mater. 28, 4507–4512 (2016).

    Article  CAS  Google Scholar 

  10. Savagatrup, S. et al. Plasticization of PEDOT:PSS by common additives for mechanically robust organic solar cells and wearable sensors. Adv. Funct. Mater. 25, 427–436 (2015).

    Article  CAS  Google Scholar 

  11. Yue, W. et al. A highly stretchable, transparent and conductive polymer. Sci. Adv. 3, e1602076 (2017).

    Google Scholar 

  12. Keplinger, C. et al. Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013).

    Article  CAS  Google Scholar 

  13. Xu, S. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013).

    Article  Google Scholar 

  14. Gonzalez, M. et al. Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 48, 825–832 (2008).

    Article  Google Scholar 

  15. Vural, M., Behrens, A. M., Ayyub, O. B., Ayoub, J. J. & Kofinas, P. Sprayable elastic conductors based on composites. ACS Nano 9, 336–344 (2015).

    Article  CAS  Google Scholar 

  16. Park, M. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotech. 7, 803–809 (2012).

    Article  CAS  Google Scholar 

  17. Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article  CAS  Google Scholar 

  18. Lacour, S. P., Wagner, S., Huang, Z. & Suo, Z. Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404–2406 (2003).

    Article  CAS  Google Scholar 

  19. Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article  CAS  Google Scholar 

  20. Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009).

    Article  CAS  Google Scholar 

  21. Chun, K. et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotech. 5, 853–857 (2010).

    Article  CAS  Google Scholar 

  22. Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    Article  CAS  Google Scholar 

  23. Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotech. 6, 788–792 (2011).

    Article  CAS  Google Scholar 

  24. Liang, J., Tong, K. & Pei, Q. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 28, 5986–5996 (2016).

    Article  CAS  Google Scholar 

  25. Tybrandt, K. & Vörös, J. Fast and efficient fabrication of intrinsically stretchable multilayer circuit boards by wax pattern assisted filtration. Small 12, 180–184 (2016).

    Article  CAS  Google Scholar 

  26. Araki, T., Nogi, M., Suganuma, K., Kogure, M. & Kirihara, O. Printable and stretchable conductive wirings comprising silver flakes and elastomers. IEEE Electron Device Lett. 32, 1424–1426 (2011).

    Article  CAS  Google Scholar 

  27. Matsuhisa, N. et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015).

    Article  CAS  Google Scholar 

  28. Ma, R., Kang, B., Cho, S., Choi, M. & Baik, S. Extraordinarily high conductivity of stretchable fibers of polyurethane and silver nanoflowers. ACS Nano 9, 10876–10886 (2015).

    Article  CAS  Google Scholar 

  29. Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).

    Article  CAS  Google Scholar 

  30. Balazs, A. C., Emrick, T. & Russell, T. P. Nanoparticle polymer composites: where two small worlds meet. Science 314, 1107–1110 (2006).

    Article  CAS  Google Scholar 

  31. Koshi, T. & Iwase, E. Self-healing metal wire using electric field trapping of metal nanoparticles. Jpn. J. Appl. Phys. 54, 06FP03 (2015).

    Article  Google Scholar 

  32. Wang, C. et al. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors. Sci. Rep. 5, 17849 (2015).

    Article  CAS  Google Scholar 

  33. Li, J. & Kim, J.-K. Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 67, 2114–2120 (2007).

    Article  CAS  Google Scholar 

  34. Stoyanov, H., Kollosche, M., Risse, S., Waché, R. & Kofod, G. Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv. Mater. 25, 578–583 (2013).

    Article  CAS  Google Scholar 

  35. Allegra, G., Raos, G. & Vacatello, M. Theories and simulations of polymer-based nanocomposites: from chain statistics to reinforcement. Prog. Polym. Sci. 33, 683–731 (2008).

    Article  CAS  Google Scholar 

  36. Sawyer, E. J. et al. Large increase in stretchability of organic electronic materials by encapsulation. Extreme Mech. Lett. 8, 78–87 (2016).

    Article  Google Scholar 

  37. Vanfleteren, J. et al. Arbitrarily shaped 2.5D circuits using stretchable interconnections and embedding in thermoplastic polymers. Procedia Technol. 15, 208–215 (2014).

    Article  Google Scholar 

  38. Li, C.-Y. & Liao, Y.-C. Adhesive stretchable printed conductive thin film patterns on PDMS surface with an atmospheric plasma treatment. ACS Appl. Mater. Interfaces 8, 11868–11874 (2016).

    Article  CAS  Google Scholar 

  39. Rybak, B. M., Ornatska, M., Bergman, K. N., Genson, K. L. & Tsukruk, V. V. Formation of silver nanoparticles at the air–water interface mediated by a monolayer of functionalized hyperbranched molecules. Langmuir 22, 1027–1037 (2006).

    Article  CAS  Google Scholar 

  40. Glover, R. D., Miller, J. M. & Hutchison, J. E. Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 5, 8950–8957 (2011).

    Article  CAS  Google Scholar 

  41. Lee, M.-H., Oh, S.-G., Suh, K.-D., Kim, D.-G. & Sohn, D. Preparation of silver nanoparticles in hexagonal phase formed by nonionic Triton X-100 surfactant. Colloids Surf. A 210, 49–60 (2002).

    Article  CAS  Google Scholar 

  42. Fried, J. R. Polymer Science and Technology (Prentice Hall, 2003).

    Google Scholar 

  43. Stepto, R. F. T. Dispersity in polymer science (IUPAC Recommendations 2009). Pure Appl. Chem. 81, 351–353 (2009).

    Article  Google Scholar 

  44. Petit, C., Lixon, P. & Pileni, M. P. In situ synthesis of silver nanocluster in AOT reverse micelles. J. Phys. Chem. 97, 12974–12983 (1993).

    Article  CAS  Google Scholar 

  45. Wagner, S. et al. Electronic skin: architecture and components. Physica E 25, 326–334 (2004).

    Article  Google Scholar 

  46. Zhang, Y. et al. Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv. Funct. Mater. 24, 2028–2037 (2014).

    Article  CAS  Google Scholar 

  47. Canavese, G., Lombardi, M., Stassi, S. & Pirri, C. F. Comprehensive characterization of large piezoresistive variation of Ni-PDMS composites. Appl. Mech. Mater. 110–116, 1336–1344 (2011).

    Article  Google Scholar 

  48. Stassi, S. & Canavese, G. Spiky nanostructured metal particles as filler of polymeric composites showing tunable electrical conductivity. J. Polym. Sci. 50, 984–992 (2012).

    Article  CAS  Google Scholar 

  49. Yokota, T. et al. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc. Natl Acad. Sci. USA 112, 14533–14538 (2015).

    Article  CAS  Google Scholar 

  50. Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the JST ERATO Bio-Harmonized Electronics Project. The authors appreciate T. Kikitsu and Y. Maebashi at the Materials Characterization Support Unit, CEMS, RIKEN for discussions on the observation of Ag nanoparticles. The authors also acknowledge Y. Jimbo, A. Miyamoto, M. Mori and K. Okaniwa at the University of Tokyo for discussions regarding the fabrication processes of printed stretchable sensors, and T. Sekitani at Osaka University for discussions on the design of elastic conductors. The authors would also like to express their gratitude to D. Ordinario, S. Lee and H. Jinno at University of Tokyo, S. Park and X. Xu at RIKEN, and M. Kaltenbrunner at Johannes Kepler University Linz for helpful discussions. The authors are grateful to Daikin Industries for gifting the fluorine rubbers used in this work, along with Yasushi Sano (S-P Solutions) and Goo Chemicals for providing the printable rigid resist. The SEM images were obtained at the shared facilities at RIKEN. N.M. is supported by Advanced Leading Graduate Course for Photon Science (ALPS) and the Japan Society for the Promotion of Science (JSPS) research fellowship for young scientists. H.J. is supported by Graduate Program for Leaders in Life Innovation (GPLLI).

Author information

Authors and Affiliations

Authors

Contributions

N.M., H.J. and T.Y. fabricated materials and devices. N.M., D.I., T.Y. and D.H. characterized elastic conductors. N.M., D.I., Y.M., A.I., P.Z. and D.H. analysed the data. N.M., H.J., Y.M., A.I. and T.S. designed materials. N.M., H.J., P.Z. and T.S. wrote manuscript. T.S. supervised this project.

Corresponding author

Correspondence to Takao Someya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuhisa, N., Inoue, D., Zalar, P. et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nature Mater 16, 834–840 (2017). https://doi.org/10.1038/nmat4904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing