Abstract
Parity–time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently debated whether topological interface states can exist at all in PT-symmetric systems. Here, we show theoretically and demonstrate experimentally the existence of such states: states that are localized at the interface between two topologically distinct PT-symmetric photonic lattices. We find analytical closed form solutions of topological PT-symmetric interface states, and observe them through fluorescence microscopy in a passive PT-symmetric dimerized photonic lattice. Our results are relevant towards approaches to localize light on the interface between non-Hermitian crystals.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Inner skin effects on non-Hermitian topological fractals
Communications Physics Open Access 16 January 2023
-
Experimental unsupervised learning of non-Hermitian knotted phases with solid-state spins
npj Quantum Information Open Access 24 September 2022
-
Three-body bound states in antiferromagnetic spin ladders
Communications Physics Open Access 06 September 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Hasan, M. Z. & Kane, C. L. Colloqium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).
Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljac̆ić, M. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008).
Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljac̆ić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–776 (2009).
Umucallar, R. O. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011).
Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).
Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).
Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).
Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).
Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).
Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15, 542–548 (2016).
Lu, L., Joannopoulos, J. D. & Soljac̆ić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).
Kitagawa, T., Berg, E., Rudner, M. & Demler, E. A. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).
Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).
Gu, Z., Fertig, H. A., Arovas, D. P. & Auerbach, A. Floquet spectrum and transport through an irradiated graphene ribbon. Phys. Rev. Lett. 107, 21660 (2011).
Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).
Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet-Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).
Lumer, Y., Plotnik, Y., Rechtsman, M. C. & Segev, M. Self-localized states in photonic topological insulators. Phys. Rev. Lett. 111, 243905 (2013).
Fefferman, C. L., Lee-Thorp, J. P. & Weinstein, M. I. Topologically protected states in one-dimensional continuous systems and Dirac points. Proc. Natl Acad. Sci. USA 111, 8759–8763 (2014).
Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998).
Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).
Musslimani, Z. H., Makris, K. G., El-Ganainy, R. & Christodoulides, D. N. Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008).
Klaiman, S., Gunther, U. & Moiseyev, N. Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008).
Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).
Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).
Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012).
Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time-symmetric microring lasers. Science 346, 975–978 (2014).
Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).
Nazari, F. et al. Optical isolation via PT-symmetric nonlinear Fano resonances. Opt. Express 22, 9574–9584 (2014).
Hu, Y. C. & Hughes, T. L. Absence of topological insulator phases in non-Hermitian PT-symmetric Hamiltonians. Phys. Rev. B 84, 153101 (2011).
Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).
Schomerus, H. Topologically protected midgap states in complex photonic lattices. Opt. Lett. 38, 1912–1914 (2013).
Yuce, C. Topological phase in a non-Hermitian PT symmetric system. Phys. Lett. A 379, 1213–1218 (2015).
Yuce, C. PT symmetric Floquet topological phase. Eur. Phys. J. D 69, 184 (2015).
Harter, A. K., Lee, T. E. & Joglekar, Y. N. PT-breaking threshold in spatially asymmetric Aubry-André and Harper models: hidden symmetry and topological states. Phys. Rev. A 93, 062101 (2016).
Poli, C., Bellec, M., Kuhl, U., Mortessagne, F. & Schomerus, H. Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nat. Commun. 6, 6710 (2015).
Zhao, H., Longhi, S. & Feng, L. Robust light state by quantum phase transition in non-Hermitian optical materials. Sci. Rep. 5, 17022 (2015).
Szameit, A. & Nolte, S. Discrete optics in femtosecond-laser-written photonic structures. J. Phys. B 43, 163001 (2010).
Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698 (1979).
Malkova, N., Hromada, I., Wang, X., Bryant, G. & Chen, Z. Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett. 34, 1633–1635 (2009).
Delplace, P., Ullmo, D. & Montambaux, G. Zak phase and the existence of edge states in graphene. Phys. Rev. B 84, 195452 (2011).
Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747 (1989).
Esaki, K., Sato, M., Hasebe, K. & Kohmoto, M. Edge states and topological phases in non-Hermitian systems. Phys. Rev. B 84, 205128 (2011).
El-Ganainy, R., Makris, K. G., Christodoulides, D. N. & Musslimani, Z. H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007).
Longhi, S. Optical realization of relativistic non-Hermitian quantum mechanics. Phys. Rev. Lett. 105, 013903 (2010).
Eichelkraut, T. et al. Mobility transition from ballistic to diffusive transport in non-Hermitian lattices. Nat. Commun. 4, 2533 (2013).
Ornigotti, M. & Szameit, A. Quasi PT-symmetry in passive photonic lattices. J. Opt. 16, 065501 (2014).
Eichelkraut, T., Weimann, S., Stützer, S., Nolte, S. & Szameit, A. Radiation-loss management in modulated waveguides. Opt. Lett. 39, 6831–6834 (2014).
Golshani, M. et al. Impact of loss on the wave dynamics in photonic waveguide lattices. Phys. Rev. Lett. 113, 123903 (2014).
Eisenberg, H. S., Silberberg, Y., Morandotti, R. & Aitchison, J. S. Diffraction management. Phys. Rev. Lett. 85, 1863 (2000).
Szameit, A. et al. Quasi-incoherent propagation in waveguide arrays. Appl. Phys. Lett. 90, 241113 (2007).
Acknowledgements
The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (grants SZ 276/7-1, SZ 276/9-1, NO462/6-1, BL 574/13-1, GRK 2101/1) and the German Ministry for Science and Education (grant 03Z1HN31). K.G.M. is supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement number PIOF-GA-2011- 303228 (project NOLACOME), and by the European Union Seventh Framework Programme (FP7-REGPOT-2012-2013-1) under grant agreement 316165. M.C.R. acknowledges suport from the Alfred P. Sloan Foundation, the National Science Foundation under grant number ECCS-1509546, as well as the Penn State MRSEC, Center for Nanoscale Science, under the award NSF DMR-1420620. The authors acknowledge useful discussions with D. Leykam, Y. Chong, T. Hughes and H. Schomerus.
Author information
Authors and Affiliations
Contributions
S.W. and M.K. did the experimental work and data analysis. S.W., M.K., Y.P., Y.L., K.G.M. and M.C.R. did the theoretical work. K.G.M., M.S., M.C.R., A.S. and S.W. were responsible for the project planning. All authors contributed equally to the manuscript writing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 919 kb)
Rights and permissions
About this article
Cite this article
Weimann, S., Kremer, M., Plotnik, Y. et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nature Mater 16, 433–438 (2017). https://doi.org/10.1038/nmat4811
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat4811
This article is cited by
-
Inner skin effects on non-Hermitian topological fractals
Communications Physics (2023)
-
Exceptional points in lossy media lead to deep polynomial wave penetration with spatially uniform power loss
Nature Nanotechnology (2022)
-
Gap solitons in a one-dimensional driven-dissipative topological lattice
Nature Physics (2022)
-
Topologically tuned terahertz confinement in a nonlinear photonic chip
Light: Science & Applications (2022)
-
Topological dissipation in a time-multiplexed photonic resonator network
Nature Physics (2022)