Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures


Magnetic topological insulators such as Cr-doped (Bi,Sb)2Te3 provide a platform for the realization of versatile time-reversal symmetry-breaking physics. By constructing heterostructures exhibiting Néel order in an antiferromagnetic CrSb and ferromagnetic order in Cr-doped (Bi,Sb)2Te3, we realize emergent interfacial magnetic phenomena which can be tailored through artificial structural engineering. Through deliberate geometrical design of heterostructures and superlattices, we demonstrate the use of antiferromagnetic exchange coupling in manipulating the magnetic properties of magnetic topological insulators. Proximity effects are shown to induce an interfacial spin texture modulation and establish an effective long-range exchange coupling mediated by antiferromagnetism, which significantly enhances the magnetic ordering temperature in the superlattice. This work provides a new framework on integrating topological insulators with antiferromagnetic materials and unveils new avenues towards dissipationless topological antiferromagnetic spintronics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Exchange couplings of Dirac fermions and AFM for different heterostructures.
Figure 2: Novel magnetic interplays in MTI/AFM superlattices (SLs).
Figure 3: Capturing the spin textures in the SL and trilayer by neutron techniques.
Figure 4: Observation of giant enhancements in exchange field (HEX), Curie temperature (TC), and coercive field (HC) in the superlattices.


  1. 1

    Chen, Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  Google Scholar 

  3. 3

    Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Li, R., Wang, J., Qi, X.-L. & Zhang, S.-C. Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Mahfouzi, F., Nagaosa, N. & Nikolic, B. K. Spin–orbit coupling induced spin-transfer torque and current polarization in topological-insulator/ferromagnet vertical heterostructures. Phys. Rev. Lett. 109, 166602 (2012).

    Article  Google Scholar 

  6. 6

    Chang, C. Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Kou, X. et al. Metal-to-insulator switching in quantum anomalous Hall states. Nat. Commun. 6, 8474 (2015).

    CAS  Article  Google Scholar 

  9. 9

    Jiang, Z. et al. Independent tuning of electronic properties and induced ferromagnetism in topological insulators with heterostructure approach. Nano Lett. 15, 5835–5840 (2015).

    CAS  Article  Google Scholar 

  10. 10

    Lang, M. et al. Proximity induced high-temperature magnetic order in topological insulator–ferrimagnetic insulator heterostructure. Nano Lett. 14, 3459–3465 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Wei, P. et al. Exchange-coupling-induced symmetry breaking in topological insulators. Phys. Rev. Lett. 110, 186807 (2013).

    Article  Google Scholar 

  12. 12

    Yang, W. et al. Proximity effect between a topological insulator and a magnetic insulator with large perpendicular anisotropy. Appl. Phys. Lett. 105, 092411 (2014).

    Article  Google Scholar 

  13. 13

    Katmis, F. et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513–516 (2016).

    CAS  Article  Google Scholar 

  14. 14

    Takei, W. J., Cox, D. E. & Shirane, G. Magnetic structures in the MnSb–CrSb system. Phys. Rev. 129, 2008–2018 (1963).

    CAS  Article  Google Scholar 

  15. 15

    Snow, A. I. Magnetic moment orientation and thermal expansion of antiferromagnetic CrSb. Rev. Mod. Phys. 25, 127 (1953).

    CAS  Article  Google Scholar 

  16. 16

    Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  Google Scholar 

  17. 17

    Shiratsuchi, Y. et al. Detection and in situ switching of unreversed interfacial antiferromagnetic spins in a perpendicular-exchange-biased system. Phys. Rev. Lett. 109, 077202 (2012).

    Article  Google Scholar 

  18. 18

    Kirby, B. J. et al. Phase-sensitive specular neutron reflectometry for imaging the nanometer scale composition depth profile of thin-film materials. Curr. Opin. Colloid Interface 17, 44–53 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Borchers, J. A. et al. Long-range magnetic order in Fe3O4/NiO superlattices. Phys. Rev. B 51, 8276–8286 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Lenz, K., Zander, S. & Kuch, W. Magnetic proximity effects in antiferromagnet/ferromagnet bilayers: the impact on the Neél temperature. Phys. Rev. Lett. 98, 237201 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Manna, P. K. & Yusuf, S. M. Two interface effects: exchange bias and magnetic proximity. Phys. Rep. 535, 61–99 (2014).

    Google Scholar 

  22. 22

    Wu, X. W. & Chien, C. L. Exchange coupling in ferromagnet/antiferromagnet bilayers with comparable TC and TN . Phys. Rev. Lett. 81, 2795–2798 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Mauri, D., Siegmann, H. C., Bagus, P. S. & Kay, E. Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate. J. Appl. Phys. 62, 3047–3049 (1987).

    Article  Google Scholar 

  24. 24

    Liu, Z. Y. & Adenwalla, S. Oscillatory interlayer exchange coupling and its temperature dependence in [Pt/Co]3/NiO/[Co/Pt]3 multilayers with perpendicular anisotropy. Phys. Rev. Lett. 91, 037207 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Wilson, M. J. et al. Interlayer and interfacial exchange coupling in ferromagnetic metal/semiconductor heterostructures. Phys. Rev. B 81, 045319 (2010).

    Article  Google Scholar 

  26. 26

    Abanin, D. A. & Pesin, D. A. Ordering of magnetic impurities and tunable electronic properties of topological insulators. Phys. Rev. Lett. 106, 136802 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Zhu, J. J., Yao, D. X., Zhang, S. C. & Chang, K. Electrically controllable surface magnetism on the surface of topological insulators. Phys. Rev. Lett. 106, 097201 (2011).

    Article  Google Scholar 

  28. 28

    Liu, Q., Liu, C. X., Xu, C., Qi, X. L. & Zhang, S. C. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009).

    Article  Google Scholar 

  29. 29

    Li, M. et al. Experimental verification of the van Vleck nature of long-range ferromagnetic order in the vanadium-doped three-dimensional topological insulator Sb2Te3 . Phys. Rev. Lett. 114, 146802 (2015).

    Article  Google Scholar 

  30. 30

    Jiang, Y. et al. Mass acquisition of Dirac fermions in magnetically doped topological insulator Sb2Te3 films. Phys. Rev. B 92, 195418 (2015).

    Article  Google Scholar 

  31. 31

    Nguyen, V. D. et al. Detection of domain-wall position and magnetization reversal in nanostructures using the magnon contribution to the resistivity. Phys. Rev. Lett. 107, 136605 (2011).

    CAS  Article  Google Scholar 

Download references


We thank S. Watson, R. Erwin and W. Chen for their assistance in the neutron diffraction experiment. We are also grateful for the support from the Army Research Office accomplished under Grant Number W911NF-15-1-10561. We also acknowledge the support by the Spins and Heat in Nanoscale Electronic Systems (SHINES), an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under award #SC0012670, and the National Science Foundation (DMR-1411085). This work was supported in part by the FAME Center, one of six centres of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Author information




Q.L.H., X.K. and K.L.W. conceived and designed the experiments. Q.L.H., L.P., X.C. and K.M. performed the sample growth and device fabrication. B.Z. and X.H. carried out the TEM experiments. All the authors contributed to the measurements and analyses. A.J.G., S.M.D., B.J.K., W.R.II and J.A.B. performed the neutron experiments and analyses. Q.L.H., X.K., A.J.G., G.Yin and K.L.W. wrote the manuscript with contributions from all the authors.

Corresponding authors

Correspondence to Qing Lin He or Kang L. Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3155 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Q., Kou, X., Grutter, A. et al. Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures. Nature Mater 16, 94–100 (2017). https://doi.org/10.1038/nmat4783

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing