Abstract
In the search for rationally assembled functional materials, superatomic crystals (SACs) have recently emerged as a unique class of compounds that combine programmable nanoscale building blocks and atomic precision1,2,3,4,5,6. As such, they bridge traditional semiconductors, molecular solids, and nanocrystal arrays by combining their most attractive features1,2,3,4,5,6,7,8,9,10,11. Here, we report the first study of thermal transport in SACs, a critical step towards their deployment as electronic, thermoelectric, and phononic materials10,11,12. Using frequency domain thermoreflectance (FDTR), we measure thermal conductivity in two series of SACs: the unary compounds Co6E8(PEt3)6 (E = S, Se, Te) and the binary compounds [Co6E8(PEt3)6][C60]2. We find that phonons that emerge from the periodicity of the superstructures contribute to thermal transport10,13,14. We also demonstrate a transformation from amorphous to crystalline thermal transport behaviour through manipulation of the vibrational landscape and orientational order of the superatoms. The structural control of orientational order enabled by the atomic precision of SACs expands the conceptual design space for thermal science.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots
Nature Communications Open Access 26 May 2023
-
Tuning network topology and vibrational mode localization to achieve ultralow thermal conductivity in amorphous chalcogenides
Nature Communications Open Access 14 May 2021
-
A family of ionic supersalts with covalent-like directionality and unconventional multiferroicity
Nature Communications Open Access 26 February 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Claridge, S. A. et al. Cluster-assembled materials. ACS Nano 3, 244–255 (2009).
Roy, X. et al. Nanoscale atoms in solid-state chemistry. Science 341, 157–160 (2013).
Baudron, S. A. et al. (EDT-TTF-CONH2)6[Re6Se8(CN)6], a metallic kagome-type organic-inorganic hybrid compound: electronic instability, molecular motion, and charge localization. J. Am. Chem. Soc. 127, 11785–11797 (2005).
Tomalia, D. A. & Khanna, S. N. A systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive Mendeleev-like nanoperiodic tables. Chem. Rev. 116, 2705–2774 (2016).
Zheng, Z., Long, J. R. & Holm, R. H. A basis set of Re6Se8 cluster building blocks and demonstration of their linking capability: directed synthesis of an Re12Se16 dicluster. J. Am. Chem. Soc. 119, 2163–2171 (1997).
Lee, C.-H. et al. Ferromagnetic ordering in superatomic solids. J. Am. Chem. Soc. 136, 16926–16931 (2014).
Cargnello, M. et al. Substitutional doping in nanocrystal superlattices. Nature 524, 450–453 (2015).
O’Brien, M. N., Jones, M. R., Lee, B. & Mirkin, C. A. Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nat. Mater. 14, 833–839 (2015).
Yoon, B. et al. Hydrogen-bonded structure and mechanical chiral response of a silver nanoparticle superlattice. Nat. Mater. 13, 807–811 (2014).
Poyser, C. L. et al. Coherent acoustic phonons in colloidal semiconductor nanocrystal superlattices. ACS Nano 10, 1163–1169 (2016).
Ong, W.-L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat. Mater. 12, 410–415 (2013).
Ong, W.-L., Majumdar, S., Malen, J. A. & McGaughey, A. J. H. Coupling of organic and inorganic vibrational states and their thermal transport in nanocrystal arrays. J. Phys. Chem. C 118, 7288–7295 (2014).
Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168–172 (2013).
Luckyanova, M. N. et al. Coherent phonon heat conduction in superlattices. Science 338, 936–939 (2012).
Majumdar, S. et al. Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions. Nano Lett. 15, 2985–2991 (2015).
Brus, L. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986).
Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).
Schettino, V. et al. The vibrational spectrum of fullerene C60 . J. Phys. Chem. A 105, 11192–11196 (2001).
Diky, V. V. & Kabo, G. J. Thermodynamic properties of C60 and C70 fullerenes. Russ. Chem. Rev. 69, 95–104 (2000).
Yu, R., Tea, N., Salamon, M., Lorents, D. & Malhotra, R. Thermal conductivity of single crystal C60 . Phys. Rev. Lett. 68, 2050–2053 (1992).
Malen, J. A. et al. Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance. J. Heat Transfer 133, 081601 (2011).
Kinsler, L. E., Frey, A. R., Coppens, A. B. & Sanders, J. V. Fundamentals of Acoustics (Wiley, 1999).
Allen, P. B., Feldman, J. L., Fabian, J. & Wooten, F. Diffusons, locons and propagons: character of atomic vibrations in amorphous Si. Phil. Mag. B 79, 1715–1731 (1999).
Cahill, D., Watson, S. & Pohl, R. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).
Wang, X., Liman, C. D., Treat, N. D., Chabinyc, M. L. & Cahill, D. G. Ultralow thermal conductivity of fullerene derivatives. Phys. Rev. B 88, 075310 (2013).
Duda, J. C., Hopkins, P. E., Shen, Y. & Gupta, M. C. Exceptionally low thermal conductivities of films of the fullerene derivative PCBM. Phys. Rev. Lett. 110, 015902 (2013).
Olson, J. R., Topp, K. A. & Pohl, R. O. Specific heat and thermal conductivity of solid fullerenes. Science 259, 1145–1148 (1993).
Huang, B. L. et al. Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement. Int. J. Heat Mass Transfer 50, 405–411 (2007).
Yang, F. & Dames, C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Phys. Rev. B 87, 035437 (2013).
David, W. I. F. et al. Crystal structure and bonding of ordered C60 . Nature 353, 147–149 (1991).
Lu, J. P., Li, X.-P. & Martin, R. M. Ground state and phase transitions in solid C60 . Phys. Rev. Lett. 68, 1551–1554 (1992).
Pisoni, A. et al. Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3 . J. Phys. Chem. Lett. 5, 2488–2492 (2014).
Kobelev, N. P., Nikolaev, R. K., Soifer, Y. M. & Khasanov, S. S. The elastic stiffness matrix of single-crystal C60 . Chem. Phys. Lett. 276, 263–265 (1997).
Tsui, T. Y. & Pharr, G. M. Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. J. Mater. Res. 14, 292–301 (1999).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).
Acknowledgements
Funding for this research was provided by the Center for Precision Assembly of Superstratic and Superatomic Solids, an NSF MRSEC (Award Number DMR-1420634). J.A.M. and W.-L.O. acknowledge support from the Army Research Office Grant W911NF-14-0350 and the National Science Foundation CAREER Award ENG-1149374. A.J.H.M. acknowledges support from NSF award DMR-1507325. X.R. and E.S.O’B. thank the Air Force Office of Scientific Research (Award Number FA9550-14-1-0381). X-ray diffraction measurements were performed in the Shared Materials Characterization Laboratory at Columbia University. Use of the Shared Materials Characterization Laboratory was made possible by funding from Columbia University. We thank R. Hastie for her help in making the illustrations. We also thank G. Elbaz and K. Lee for their help with sample preparation, and C. Nuckolls, M. Steigerwald, L. Campos, X. Zhu and C. Dean for the use of their instruments and for useful discussions.
Author information
Authors and Affiliations
Contributions
W.-L.O. conducted the FDTR and DSC measurements on the SACs and first-principles calculations. E.S.O’B. synthesized SACs and together with D.W.P. conducted SCXRD characterization. P.S.M.D. conducted the nanoindentations. W.-L.O. and E.S.O’B. wrote the manuscript. J.A.M., X.R., A.J.H.M. and C.F.H.III edited the manuscript. All authors discussed the data and commented on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 1785 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 100 K; CCDC reference 1497864 (CIF 500 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 125 K; CCDC reference 1497865 (CIF 482 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 150 K; CCDC reference 1497866 (CIF 488 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 175 K; CCDC reference 1497867 (CIF 484 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 185 K; CCDC reference 1497868 (CIF 466 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 190 K; CCDC reference 1497869 (CIF 564 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 200 K; CCDC reference 1497870 (CIF 592 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 225 K; CCDC reference 1497871 (CIF 591 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 250 K; CCDC reference 1497872 (CIF 597 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 275 K; CCDC reference 1497873 (CIF 615 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 300 K; CCDC reference 1497874 (CIF 575 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 100 K; CCDC reference 1497876 (CIF 831 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 125 K; CCDC reference 1497877 (CIF 825 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 150 K; CCDC reference 1497878 (CIF 838 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 175 K; CCDC reference 1497879 (CIF 838 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 200 K; CCDC reference 1497880 (CIF 842 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 225 K; CCDC reference 1497881 (CIF 841 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 250 K; CCDC reference 1497882 (CIF 851 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 275 K; CCDC reference 1497883 (CIF 854 kb)
Supplementary Information
Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 300 K; CCDC reference 1497884 (CIF 856 kb)
Supplementary Information
Crystallographic information for Co6S8(PEt3)6 at 100 K; CCDC reference 1497860 (CIF 440 kb)
Supplementary Information
Crystallographic information for Co6S8(PEt3)6 at 293 K; CCDC reference 1497861 (CIF 210 kb)
Supplementary Information
Crystallographic information for Co6S8(PEt3)6 at 100 K; CCDC reference 1497862 (CIF 409 kb)
Supplementary Information
Crystallographic information for Co6S8(PEt3)6 at 293 K; CCDC reference 1497863 (CIF 403 kb)
Supplementary Information
Crystallographic information for Co6S8(PEt3)6 at 100 K; CCDC reference 1497875 (CIF 1070 kb)
Rights and permissions
About this article
Cite this article
Ong, WL., O’Brien, E., Dougherty, P. et al. Orientational order controls crystalline and amorphous thermal transport in superatomic crystals. Nature Mater 16, 83–88 (2017). https://doi.org/10.1038/nmat4739
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat4739
This article is cited by
-
Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots
Nature Communications (2023)
-
A few-layer covalent network of fullerenes
Nature (2023)
-
A family of ionic supersalts with covalent-like directionality and unconventional multiferroicity
Nature Communications (2021)
-
Superatomic solid solutions
Nature Chemistry (2021)
-
Tuning network topology and vibrational mode localization to achieve ultralow thermal conductivity in amorphous chalcogenides
Nature Communications (2021)