The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen


The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of −0.1 V and 50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Electrochemical set-up for the HER measurement on single-layer MoS2.
Figure 2: Electrochemical measurements from individual single-layer MoS2 nanosheets.
Figure 3: Influence of the contact resistance on the HER performances of MoS2.
Figure 4: HAADF-STEM observations of sulfur vacancies in single-layer MoS2 nanosheets.


  1. 1

    Crabtree, G. W., Dresselhaus, M. S. & Buchanan, M. V. The hydrogen economy. Phys. Today 57, 39–44 (December, 2004).

    CAS  Article  Google Scholar 

  2. 2

    Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater. 5, 909–913 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Vesborg, P. C. K., Seger, B. & Chorkendorff, I. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett. 6, 951–957 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Morales-Guio, C. G., Stern, L.-A. & Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555–6569 (2014).

    CAS  Article  Google Scholar 

  5. 5

    Yan, Y., Xia, B., Xu, Z. & Wang, X. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal. 4, 1693–1705 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Yang, J. & Shin, H. S. Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction. J. Mater. Chem. A 2, 5979–5985 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Tsai, C., Chan, K., Nørskov, J. K. & Abild-Pedersen, F. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 640, 133–140 (2015).

    CAS  Article  Google Scholar 

  8. 8

    Merki, D. & Hu, X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4, 3878–3888 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Bonde, J., Moses, P. G., Jaramillo, T. F., Nørskov, J. K. & Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 140, 219–231 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Xie, J. et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135, 17881–17888 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Mater. 12, 850–855 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Merki, D., Vrubel, H., Rovelli, L., Fierro, S. & Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 3, 2515–2525 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Merki, D., Fierro, S., Vrubel, H. & Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Jaramillo, T. F. et al. Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts. J. Phys. Chem. C 112, 17492–17498 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Chen, Z. et al. Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett. 11, 4168–4175 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Mater. 11, 963–969 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Kibsgaard, J., Jaramillo, T. F. & Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nature Chem. 6, 248–253 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Tsai, C., Abild-Pedersen, F. & Nørskov, J. K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 14, 1381–1387 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Yang, J. et al. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew. Chem. Int. Ed. 52, 13751–13754 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Chen, J.-R. et al. Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett. 13, 3106–3110 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Yoon, Y., Ganapathi, K. & Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Popov, I., Seifert, G. & Tománek, D. Designing electrical contacts to MoS2 monolayers: a computational study. Phys. Rev. Lett. 108, 156802 (2012).

    Article  Google Scholar 

  30. 30

    Liu, H., Neal, A. T. & Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 6, 8563–8569 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Liu, H. et al. Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers. ACS Nano 8, 1031–1038 (2014).

    CAS  Article  Google Scholar 

  32. 32

    Kaushik, N. et al. Schottky barrier heights for Au and Pd contacts to MoS2 . Appl. Phys. Lett. 105, 113505 (2014).

    Article  Google Scholar 

  33. 33

    Liu, H. et al. Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett. 13, 2640–2646 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nature Mater. 14, 1195–1205 (2015).

    CAS  Article  Google Scholar 

  35. 35

    Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nature Mater. 13, 1128–1134 (2014).

    CAS  Article  Google Scholar 

  36. 36

    Kappera, R. et al. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2 . APL Mater. 2, 092516 (2014).

    Article  Google Scholar 

  37. 37

    Eda, G. et al. Coherent atomic and electronic heterostructures of single-layer MoS2 . ACS Nano 6, 7311–7317 (2012).

    CAS  Article  Google Scholar 

  38. 38

    Liao, L. et al. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 23, 5326–5333 (2013).

    CAS  Article  Google Scholar 

  39. 39

    Chang, Y.-H. et al. Highly efficient electrocatalytic hydrogen production by MoSX grown on graphene-protected 3D Ni foams. Adv. Mater. 25, 756–760 (2013).

    CAS  Article  Google Scholar 

  40. 40

    Conway, B. E. & Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 22–23, 3571–3594 (2002).

    Article  Google Scholar 

  41. 41

    Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Mater. 15, 48–53 (2016).

    CAS  Article  Google Scholar 

  42. 42

    Komsa, H.-P. et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).

    Article  Google Scholar 

  43. 43

    Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

    CAS  Article  Google Scholar 

  44. 44

    Hong, J. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nature Commun. 6, 6293 (2015).

    CAS  Article  Google Scholar 

  45. 45

    Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nature Commun. 4, 2642 (2013).

    Article  Google Scholar 

  46. 46

    McDonnell, S., Addou, R., Buie, C., Wallace, R. M. & Hinkle, C. L. Defect-dominated doping and contact resistance in MoS2 . ACS Nano 8, 2880–2888 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Tongay, S. et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013).

    Article  Google Scholar 

  48. 48

    Tran, P. D. et al. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nature Mater. 15, 640–646 (2016).

    CAS  Article  Google Scholar 

  49. 49

    Voiry, D. et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature Chem. 7, 45–49 (2015).

    CAS  Article  Google Scholar 

Download references


M.C. and D.V. acknowledge financial support from NSF DGE 0903661 and ECCS 1128335. T.A. acknowledges financial assistance from NSF (CAREER CHE-1004218, DMR-0968937, NanoEHS-1134289, NSF-ACIF, and Special Creativity Grant). C.d.C.C.e.S. acknowledges the Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brazil, for a fellowship. J.Y. and M.C. acknowledge financial support from Rutgers Energy Institute. A.M. acknowledges LDRD program at LANL for funding this work. M.J.L. and P.E.B. acknowledge support from the US DOE, Office of Science, BES Award No. DE-SC0005132 and NSF No. 0959905. L.B., D.E., and V.B.S. acknowledge EFMA-542879, CMMI-1363203 and CBET-1235870 from the US National Science Foundation.

Author information




M.C. and D.V. conceived the idea and designed the experiments. D.V. performed the HER measurements and the physical characterizations of the samples. M.C. and D.V. analysed the data and wrote the manuscript. R.F. and R.K. fabricated the devices and helped D.V. with the contact resistance calculations. C.d.C.C.e.S. and J.Y. assisted D.V. with the HER measurements. D.K. and I.B. synthesized the single-layer MoS2 nanosheets. M.J.L. and P.E.B. carried out the STEM measurements on MoS2. L.D. and D.E. performed the DFT calculations. V.B.S. discussed the results of the DFT calculations with M.C. and D.V.; G.G., A.D.M. and T.A. discussed the results with M.C. and D.V.

Corresponding author

Correspondence to Manish Chhowalla.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3597 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voiry, D., Fullon, R., Yang, J. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nature Mater 15, 1003–1009 (2016).

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing