Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet


Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. Whereas their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting owing to the emergence of fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. These we report here for a ruthenium-based material, α-RuCl3, continuing a major search (so far concentrated on iridium materials) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm the requisite strong spin–orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly two-dimensional nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl3 as a prime candidate for fractionalized Kitaev physics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure and bulk properties of 2D layered α-RuCl3.
Figure 2: Spin–orbit coupling mode in α-RuCl3, measured using inelastic neutron scattering at T = 5 K with incident energy Ei = 1.5 eV.
Figure 3: Collective magnetic modes measured with inelastic neutron scattering using 25 meV incident neutrons.
Figure 4: Spin wave theory calculations.
Figure 5: Disagreements with classical SWT and agreement with QSL calculations.


  1. 1

    Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Lee, P. A. An end to the drought of quantum spin liquids. Science 321, 1306–1307 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Yamashita, M. et al. Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid. Science 328, 1246–1248 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Sachdev, S. Quantum magnetism and criticality. Nature Phys. 4, 173–185 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sharma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Lake, B., Tennant, D. A., Frost, C. D. & Nagler, S. E. Quantum criticality and universal scaling of a quantum antiferromagnet. Nature Mater. 4, 329–334 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Han, T.-H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Baskaran, G., Mandal, S. & Shankar, R. Exact results for spin dynamics and fractionalization in the Kitaev model. Phys. Rev. Lett. 98, 247201 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Knolle, J., Kovrizhin, D. L., Chalker, J. T. & Moessner, R. Dynamics of a two-dimensional quantum spin liquid: signatures of emergent Majorana fermions and fluxes. Phys. Rev. Lett. 112, 207203 (2014).

    Article  Google Scholar 

  11. 11

    Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Chaloupka, J., Jackeli, G. & Khaliullin, G. Kitaev–Heisenberg model on a honeycomb lattice: possible exotic phases in iridium oxides A2IrO3 . Phys. Rev. Lett. 105, 027204 (2010).

    Article  Google Scholar 

  13. 13

    Kim, B. J. et al. Phase-sensitive observation of a spin–orbital Mott state in Sr2IrO4 . Science 323, 1329–1332 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Singh, Y. et al. Relevance of the Heisenberg–Kitaev model for the honeycomb lattice iridates A2IrO3 . Phys. Rev. Lett. 108, 127203 (2012).

    Article  Google Scholar 

  15. 15

    Choi, S. K. et al. Spinwaves and revised crystal structure of honeycomb iridate Na2IrO3 . Phys. Rev. Lett. 108, 127204 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Ye, F. et al. Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: a neutron and X-ray diffraction investigation of single-crystal Na2IrO3 . Phys. Rev. B 85, 180403(R) (2012).

    Article  Google Scholar 

  17. 17

    Knolle, J., Chern, G.-W., Kovrizhin, D. L., Moessner, R. & Perkins, N. B. Raman scattering signatures of Kitaev spin liquids in A2IrO3 iridates with A = Na or Li. Phys. Rev. Lett. 113, 187201 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Gretarsson, H. et al. Magnetic excitation spectrum of Na2IrO3 probed with resonant inelastic X-ray scattering. Phys. Rev. B 87, 220407(R) (2013).

    Article  Google Scholar 

  19. 19

    Chun, S. H. et al. Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3 . Nature Phys. 11, 462–466 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Figgis, B. N., Lewis, J., Mabbs, F. E. & Webb, G. A. Magnetic properties of some iron(III) and ruthenium(III) low-spin complexes. J. Chem. Soc. A 422–426 (1966).

  21. 21

    Fletcher, J. M. et al. Anhydrous ruthenium chlorides. Nature 199, 1089–1090 (1963).

    CAS  Article  Google Scholar 

  22. 22

    Fletcher, J. M., Gardner, W. E., Fox, A. C. & Topping, G. X-ray, infrared, and magnetic studies of α- and β-ruthenium trichloride. J. Chem. Soc. A 1038–1045 (1967).

  23. 23

    Plumb, K. W. et al. α-RuCl3: a spin–orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112(R) (2014).

    Article  Google Scholar 

  24. 24

    Sandilands, L. J. et al. Scattering continuum and possible fractionalized excitations in α-RuCl3 . Phys. Rev. Lett. 114, 147201 (2015).

    Article  Google Scholar 

  25. 25

    Sears, J. A. et al. Magnetic order in α-RuCl3: a honeycomb lattice quantum magnet with strong spin–orbit coupling. Phys. Rev. B 91, 144420 (2015).

    Article  Google Scholar 

  26. 26

    Shankar, V. V., Kim, H.-S. & Kee, H.-Y. Kitaev magnetism in honeycomb RuCl3 with intermediate spin–orbit coupling. Phys. Rev. B 91, 241110 (2015).

    Article  Google Scholar 

  27. 27

    Majumder, M. et al. Anisotropic Ru3+ 4d5 magnetism in the α-RuCl3 honeycomb system: susceptibility, specific heat and zero-field NMR. Phys. Rev. B 91, 180401(R) (2015).

    Article  Google Scholar 

  28. 28

    Sandilands, L. J. et al. Spin-orbit excitations and electronic structure of the putative Kitaev magnet α-RuCl3 . Phys. Rev. B 93, 075144 (2016).

    Article  Google Scholar 

  29. 29

    Kubota, Y., Tanaka, H., Ono, T., Narumi, Y. & Kindo, K. Successive magnetic phase transitions in α-RuCl3: XY-like frustrated magnet on the honeycomb lattice. Phys. Rev. B 91, 094422 (2015).

    Article  Google Scholar 

  30. 30

    Krumhansl, J. & Brooks, H. The lattice vibration specific heat of graphite. J. Chem. Phys. 21, 1663–1669 (1953).

    CAS  Article  Google Scholar 

  31. 31

    Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions (Oxford Univ. Press, 1970).

    Google Scholar 

  32. 32

    Stevens, K. W. H. On the magnetic properties of covalent XY6 complexes. Proc. Phys. Soc. A 219, 542–555 (1953).

    CAS  Article  Google Scholar 

  33. 33

    Perkins, N. B., Sizyuk, Y. & Wölfle, P. Interplay of many-body and single-particle interactions in iridates and rhodates. Phys. Rev. B 89, 035143 (2014).

    Article  Google Scholar 

  34. 34

    Chaloupka, J., Jackeli, G. & Khaliullin, G. Zigzag magnetic order in the iridium oxide Na2IrO3 . Phys. Rev. Lett. 110, 097204 (2013).

    Article  Google Scholar 

  35. 35

    Rau, J. G. & Kee, H.-Y. Trigonal distortion in the honeyccomb iridates: proximity of zigzag and spiral phases in Na2IrO3. Preprint at (2014).

  36. 36

    Rau, J. G., Lee, E. K.-H. & Kee, H.-Y. Generic spin model for the honeycomb iridates beyond the Kitaev limit. Phys. Rev. Lett. 112, 077204 (2014).

    Article  Google Scholar 

  37. 37

    Sizyuk, Y., Price, C., Wolfle, P. & Perkins, N. B. Importance of anisotropic exchange interactions in honeycomb iridates: minimal model for zigzag antiferromagnetic order in Na2IrO3 . Phys. Rev. B 90, 155126 (2014).

    Article  Google Scholar 

  38. 38

    Katukuri, V. M. et al. Kitaev interactions between j = 1/2 moments in honeycomb Na2IrO3 are large and ferromagnetic: insights from ab initio quantum chemistry calculations. New J. Phys. 16, 013056 (2014).

    Article  Google Scholar 

  39. 39

    Chaloupka, J. & Khaliullin, G. Hidden symmetries of the extended Kitaev–Heisenberg model: implications for honeycomb lattice iridates A2IrO3 . Phys. Rev. B 92, 024413 (2015).

    Article  Google Scholar 

  40. 40

    Alpichshev, Z., Mahmood, F., Cao, G. & Gedik, N. Confinement-deconfinement transition as an indication of spin-liquid-type behavior in Na2IrO3 . Phys. Rev. Lett. 114, 017203 (2015).

    Article  Google Scholar 

  41. 41

    Nasu, J., Udagawa, M. & Motome, Y. Vaporization of Kitaev spin liquids. Phys. Rev. Lett. 113, 197205 (2014).

    Article  Google Scholar 

  42. 42

    Nasu, J., Udagawa, M. & Motome, Y. Thermal fractionalization of quantum spins in a Kitaev model. Phys. Rev. B 92, 115122 (2015).

    Article  Google Scholar 

  43. 43

    Modic, K. A. et al. Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate. Nature Commun. 5, 4203 (2014).

    CAS  Article  Google Scholar 

  44. 44

    Takayama, T. et al. Hyperhoneycomb iridate β—Li2IrO3 as a platform for Kitaev magnetism. Phys. Rev. Lett. 114, 077202 (2015).

    CAS  Article  Google Scholar 

  45. 45

    Zschocke, F. & Vojta, M. Physical states and finite-size effects in Kitaev’s honeycomb model: bond disorder, spin excitations, and NMR lineshape. Phys. Rev. B 92, 014403 (2015).

    Article  Google Scholar 

  46. 46

    Granroth, G. E. et al. SEQUOIA: a newly operating chopper spectrometer at the SNS. J. Phys. Conf. Ser. 251, 12058 (2010).

    Article  Google Scholar 

  47. 47

    Abernathy, D. L. et al. Design and operation of the wide angular range chopper spectrometer ARCS at the SNS. Rev. Sci. Instrum. 83, 15114 (2012).

    CAS  Article  Google Scholar 

  48. 48

    Toth, S. & Lake, B. Linear spin wave theory for single-Q incommensurate magnetic structures. J. Phys. Condens. Matter 27, 166002 (2014).

    Article  Google Scholar 

  49. 49

    Cromer, D. T. & Weber, J. T. Scattering Factors Computed from Relativistic Dirac–Slater Wave Functions LANL REPORT LA-3056 (Los Alamos Research Library, 1964).

    Google Scholar 

Download references


Research using ORNL’s HFIR and SNS facilities was sponsored by the US Department of Energy, Office of Science, Basic Energy Sciences (BES), Scientific User Facilities Division. A part of the synthesis and the bulk characterization performed at ORNL was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (C.A.B. and J.-Q.Y.). The work at University of Tennessee was funded in part by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4416 (D.G.M. and L.L.). The work at Dresden was in part supported by DFG grant SFB 1143 (J.K. and R.M.), and by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD) (J.K.). D.L.K. is supported by EPSRC Grant No. EP/M007928/1. The collaboration as a whole was supported by the Helmholtz Virtual Institute ‘New States of Matter and their Excitations’ initiative. We thank B. Chakoumakos for overall support in the project, and J. Chalker, J. Rau, S. Toth, G. Khaliullin and F. Ye for valuable discussions. We thank P. Whitfield from the POWGEN beamline and Z. Gai from the CNMS facility for helping with neutron diffraction and magnetic susceptibility measurements.

Author information




S.E.N., A.B. and D.G.M. conceived the project and the experiment. C.A.B., A.B., L.L., J.-Q.Y., Y.Y. and D.G.M. made the sample. J.-Q.Y., L.L., A.B. and C.A.B. performed the bulk measurements, A.B., A.A.A., M.B.S., G.E.G., M.D.L. and S.E.N. performed INS measurements, A.B., S.E.N., C.A.B., M.D.L., M.B.S. and D.A.T. analysed the data. Further modelling and interpreting of the neutron scattering data was carried out by A.B., M.D.L., S.E.N., J.K., S.B., D.L.K. and R.M., where A.B., M.D.L., S.B. and S.E.N. performed SWT simulations, and J.K., S.B., D.L.K. and R.M. carried out QSL theory calculations. A.B. and S.E.N. prepared the first draft, and all authors contributed to writing the manuscript.

Corresponding authors

Correspondence to A. Banerjee or S. E. Nagler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2534 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Bridges, C., Yan, JQ. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nature Mater 15, 733–740 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing