Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling

Abstract

Controlled in-plane rotation of the magnetic easy axis in manganite heterostructures by tailoring the interface oxygen network could allow the development of correlated oxide-based magnetic tunnelling junctions with non-collinear magnetization, with possible practical applications as miniaturized high-switching-speed magnetic random access memory (MRAM) devices. Here, we demonstrate how to manipulate magnetic and electronic anisotropic properties in manganite heterostructures by engineering the oxygen network on the unit-cell level. The strong oxygen octahedral coupling is found to transfer the octahedral rotation, present in the NdGaO3 (NGO) substrate, to the La2/3Sr1/3MnO3 (LSMO) film in the interface region. This causes an unexpected realignment of the magnetic easy axis along the short axis of the LSMO unit cell as well as the presence of a giant anisotropic transport in these ultrathin LSMO films. As a result we possess control of the lateral magnetic and electronic anisotropies by atomic-scale design of the oxygen octahedral rotation.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Oxygen octahedral coupling at interfaces in manganite heterostructures.
Figure 2: Magnetic anisotropy in manganite heterostructures.
Figure 3: Thickness dependence of the magnetic anisotropy in manganite heterostructures.
Figure 4: Thickness dependence of the transport anisotropy in manganite heterostructures.
Figure 5: Structural mechanism of directional switching of magnetic anisotropy.

References

  1. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nature Mater. 11, 103–113 (2012).

    CAS  Article  Google Scholar 

  2. Zubko, P., Gariglio, S., Gabay, M., Ghosez, P. & Triscone, J.-M. Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141–165 (2011).

    CAS  Article  Google Scholar 

  3. Chakhalian, J. et al. Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114–1117 (2007).

    CAS  Article  Google Scholar 

  4. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    CAS  Article  Google Scholar 

  5. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater. 6, 493–496 (2007).

    CAS  Article  Google Scholar 

  6. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    CAS  Article  Google Scholar 

  7. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    CAS  Article  Google Scholar 

  8. Aetukuri, N. B. et al. Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy. Nature Phys. 9, 661–666 (2013).

    CAS  Article  Google Scholar 

  9. Ward, T. Z. et al. Elastically driven anisotropic percolation in electronic phase-separated manganites. Nature Phys. 5, 885–888 (2009).

    CAS  Article  Google Scholar 

  10. Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    CAS  Article  Google Scholar 

  11. Boris, A. V. et al. Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332, 937–940 (2011).

    CAS  Article  Google Scholar 

  12. King, P. D. C. et al. Atomic-scale control of competing electronic phases in ultrathin LaNiO3 . Nature Nanotech. 9, 443–447 (2014).

    CAS  Article  Google Scholar 

  13. Salamon, M. B. & Jaime, M. The physics of manganites: structure and transport. Rev. Mod. Phys. 73, 583–628 (2001).

    CAS  Article  Google Scholar 

  14. Coey, J. M. D., Viret, M. & von Molnaír, S. Mixed-valence manganites. Adv. Phys. 48, 167–293 (1999).

    CAS  Article  Google Scholar 

  15. Chmaissem, O. et al. Relationship between structural parameters and the Néel temperature in Sr1−xCaxMnO3 (0 < x < 1) and Sr1−yBayMnO3 (y < 0.2). Phys. Rev. B 64, 134412 (2001).

    Article  Google Scholar 

  16. Radaelli, P. G. et al. Structural effects on the magnetic and transport properties of perovskite A1−xAx′MnO3 (x = 0.25, 0.30). Phys. Rev. B 56, 8265–8276 (1997).

    CAS  Article  Google Scholar 

  17. Alonso, J. A., Martínez-Lope, M. J., Casais, M. T., Aranda, M. A. G. & Fernández-Díaz, M. T. Metal–insulator transitions, structural and microstructural evolution of RNiO3 (R = Sm, Eu, Gd, Dy, Ho, Y) perovskites: evidence for room-temperature charge disproportionation in monoclinic HoNiO3 and YNiO3 . J. Am. Chem. Soc. 121, 4754–4762 (1999).

    CAS  Article  Google Scholar 

  18. Garcia-Munoz, J. L., Fontcuberta, J., Suaaidi, M. & Obradors, X. Bandwidth narrowing in bulk L2/3A1/3MnO3 magnetoresistive oxides. J. Phys. Condens. Matter 8, L787–L794 (1996).

    CAS  Article  Google Scholar 

  19. Ding, Y. et al. Pressure-induced magnetic transition in manganite (La0.75Ca0.25MnO3). Phys. Rev. Lett. 102, 237201 (2009).

    Article  Google Scholar 

  20. Zhai, X. F. et al. Correlating interfacial octahedral rotations with magnetism in (LaMnO3 + δ)N/(SrTiO3)N superlattices. Nature Commun. 5, 4283 (2014).

    CAS  Article  Google Scholar 

  21. Rondinelli, J. M. & Spaldin, N. A. Structure and properties of functional oxide thin films: insights from electronic-structure calculations. Adv. Mater. 23, 3363–3381 (2011).

    CAS  Article  Google Scholar 

  22. Lee, J. H. et al. Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy. Nature Mater. 13, 879–883 (2014).

    CAS  Article  Google Scholar 

  23. Rondinelli, J. M., May, S. J. & Freeland, J. W. Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37, 261–270 (2012).

    CAS  Article  Google Scholar 

  24. Kinyanjui, M. K. et al. Lattice distortions and octahedral rotations in epitaxially strained LaNiO3/LaAlO3 superlattices. Appl. Phys. Lett. 104, 221909 (2014).

    Article  Google Scholar 

  25. Borisevich, A. Y. et al. Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett. 105, 087204 (2010).

    CAS  Article  Google Scholar 

  26. He, J., Borisevich, A. Y., Kalinin, S. V., Pennycook, S. J. & Pantelides, S. T. Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105, 227203 (2010).

    Article  Google Scholar 

  27. Aso, R., Kan, D., Shimakawa, Y. & Kurata, H. Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci. Rep. 3, 2214 (2013).

    Article  Google Scholar 

  28. Chen, Y. B. et al. Interface structure and strain relaxation in BaTiO3 thin films grown on GdScO3 and DyScO3 substrates with buried coherent SrRuO3 layer. Appl. Phys. Lett. 91, 252906 (2007).

    Article  Google Scholar 

  29. Glazer, A. M. Classification of tilted octahedral in perovskites. Acta Crystallogr. B 28, 3384–3392 (1972).

    CAS  Article  Google Scholar 

  30. Vasylechko, L. et al. The crystal structure of NdGaO3 at 100 K and 293 K based on synchrotron data. J. Alloys Compd. 297, 46–52 (2000).

    CAS  Article  Google Scholar 

  31. Liao, Z., Huijben, M., Koster, G. & Rijnders, G. Uniaxial magnetic anisotropy induced low field anomalous anisotropic magnetoresistance in manganite thin films. Appl. Phys. Lett. Mater. 2, 096112 (2014).

    Google Scholar 

  32. Ovsyannikov, S. V. et al. Perovskite-like Mn2O3: a path to new manganites. Angew. Chem. Int. Ed. 52, 1494–1498 (2013).

    CAS  Article  Google Scholar 

  33. Boschker, H. et al. Strong uniaxial in-plane magnetic anisotropy of (001)- and (011)-oriented La0.67Sr0.33MnO3 thin films on NdGaO3 substrates. Phys. Rev. B 79, 214425 (2009).

    Article  Google Scholar 

  34. Macke, S. et al. Element specific monolayer depth profiling. Adv. Mater. 26, 6554–6559 (2014).

    CAS  Article  Google Scholar 

  35. Park, J. H. et al. Magnetic properties at surface boundary of a half-metallic ferromagnet La0.7Sr0.3MnO3 . Phys. Rev. Lett. 81, 1953–1956 (1998).

    CAS  Article  Google Scholar 

  36. Huijben, M. et al. Critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films. Phys. Rev. B 78, 094413 (2008).

    Article  Google Scholar 

  37. Wang, B. M. et al. Oxygen-driven anisotropic transport in ultra-thin manganite films. Nature Commun. 4, 2778 (2013).

    Article  Google Scholar 

  38. Vailionis, A. et al. Misfit strain accommodation in epitaxial ABO3 perovskites: lattice rotations and lattice modulations. Phys. Rev. B 83, 064101 (2011).

    Article  Google Scholar 

  39. Medarde, M. et al. High-pressure neutron-diffraction study of the metallization process in PrNiO3 . Phys. Rev. B 52, 9248–9258 (1995).

    CAS  Article  Google Scholar 

  40. Dong, S. et al. Highly anisotropic resistivities in the double-exchange model for strained manganites. Phys. Rev. B 82, 159902 (2010).

    Article  Google Scholar 

  41. Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nature Mater. 11, 372–381 (2012).

    CAS  Article  Google Scholar 

  42. Brataasa, A., Bauer, G. E. W. & Kelly, P. J. Non-collinear magnetoelectronics. Phys. Rep. 427, 157–255 (2006).

    Article  Google Scholar 

  43. Kan, D. et al. Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nature Mater. http://dx.doi.org/10.1038/nmat4580 (2016).

  44. Macke, S. & Goering, E. Magnetic reflectometry of heterostructures. J. Phys. Condens. Matter 26, 363201 (2014).

    CAS  Article  Google Scholar 

  45. Hawthorn, D. G. et al. An in-vacuum diffractometer for resonant elastic soft X-ray scattering. Rev. Sci. Instrum. 82, 073104 (2011).

    CAS  Article  Google Scholar 

  46. Zhong, Z., Toth, A. & Held, K. Theory of spin–orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3 surfaces. Phys. Rev. B 87, 161102 (2013).

    Article  Google Scholar 

  47. Yamasaki, A., Feldbacher, M., Yang, Y.-F., Andersen, O. K. & Held, K. Pressure-induced metal–insulator transition in LaMnO3 is not of Mott-Hubbard type. Phys. Rev. Lett. 96, 166401 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge E. Houwman for stimulating discussions. M.H., G.K. and G.R. acknowledge funding from the DESCO programme of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the Seventh Framework Programme (FP7) grant no. NMP3-LA-2010-246102 IFOX. J.V. and S.V.A. acknowledge funding from FWO projects G.0044.13N and G. 0368.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the Seventh Framework Programme (FP7), ERC Starting Grant 278510 VORTEX. N.G., S.V.A., J.V. and G.V.T. acknowledge financial support from the European Union under the Seventh Framework Programme under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. Z.Z. acknowledges funding from the SFB ViCoM (Austrian Science Fund project ID F4103-N13) and calculations done on the Vienna Scientific Cluster (VSC).

Author information

Authors and Affiliations

Authors

Contributions

Z.L. conceived the design and performed film growth and magnetic/transport measurements. Z.L., M.H., G.K., G.R. and Z.Z. performed data analysis and interpretation. N.G., S.V.A., J.V. and G.V.T. performed STEM and EDX measurements and analysis. S.M., G.K., R.J.G. and G.A.S. performed RXR measurements and analysis. Z.Z. and K.H. performed DFT calculations. All authors extensively discussed the results and were involved in writing of the manuscript.

Corresponding author

Correspondence to M. Huijben.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7498 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, Z., Huijben, M., Zhong, Z. et al. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling. Nature Mater 15, 425–431 (2016). https://doi.org/10.1038/nmat4579

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4579

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing