In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes

Abstract

A primary atomic-scale effect accompanying Li-ion insertion into rechargeable battery electrodes is a significant intercalation-induced change of the unit cell volume of the crystalline material. This generates a variety of secondary multiscale dimensional changes and causes a deterioration in the energy storage performance stability. Although traditional in situ height-sensing techniques (atomic force microscopy or electrochemical dilatometry) are able to sense electrode thickness changes at a nanometre scale, they are much less informative concerning intercalation-induced changes of the porous electrode structure at a mesoscopic scale. Based on a electrochemical quartz-crystal microbalance with dissipation monitoring on multiple overtone orders, herein we introduce an in situ hydrodynamic spectroscopic method for porous electrode structure characterization. This new method will enable future developments and applications in the fields of battery and supercapacitor research, especially for diagnostics of viscoelastic properties of binders for composite electrodes and probing the micromechanical stability of their internal electrode porous structure and interfaces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Hydrodynamic spectroscopic characterization of an ideally flat electrode surface and an artificial rough surface composed of rigid polymeric semi-spheres.
Figure 2: Electrochemical properties of spray-pyrolysed LiMn2O4 electrode coatings of different loading masses.
Figure 3: Sketch of the porous electrode structures for different loading masses matched to their SEM images.
Figure 4: Comparison between the EQCM-D responses of LiMn2O4 electrodes of different morphologies in air and in liquid.
Figure 5: Combined EQCM-D and CV characterization of the Li-intercalation/deintercalation process in LiMn2O4 electrodes of different morphologies.

References

  1. 1

    Armstrong, A. R. & Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996).

    CAS  Article  Google Scholar 

  2. 2

    Erickson, E. M., Ghanty, C. & Aurbach, D. New horizons for conventional lithium ion battery technology. J. Phys. Chem. Lett. 5, 3313–3324 (2014).

    CAS  Article  Google Scholar 

  3. 3

    Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Xu, M., Tsiouvaras, N., Garsuch, A., Gasteiger, H. A. & Lucht, B. L. Generation of cathode passivation films via oxidation of lithium bis (oxalato) borate on high voltage spinel (LiNi0.5Mn1.5O4). J. Phys. Chem. C 118, 7363–7368 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Yuan, L.-X. et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 4, 269–284 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Zhu, M., Park, J. & Sastry, A. M. Fracture analysis of the cathode in Li-ion batteries: a simulation study. J. Electrochem. Soc. 159, A492–A498 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Arruda, T. M. et al. In situ tracking of the nanoscale expansion of porous carbon electrodes. Energy Environ. Sci. 6, 225–231 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Hantel, M., Weingarth, D. & Kötz, R. Parameters determining dimensional changes of porous carbons during capacitive charging. Carbon 69, 275–286 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Kaasik, F. et al. Anisometric charge dependent swelling of porous carbon in an ionic liquid. Electrochem. Commun. 34, 196–199 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Rodahl, M. & Kasemo, B. A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance. Rev. Sci. Instrum. 67, 3238–3241 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Arnau, A. A review of interface electronic systems for AT-cut quartz crystal microbalance applications in liquids. Sensors 8, 370–411 (2008).

    Article  Google Scholar 

  13. 13

    Daikhin, L., Sigalov, S., Levi, M. D., Salitra, G. & Aurbach, D. Quartz crystal impedance response of nonhomogenous composite electrodes in contact with liquids. Anal. Chem. 83, 9614–9621 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Daikhin, L. & Urbakh, M. Effect of surface film structure on the quartz crystal microbalance response in liquids. Langmuir 12, 6354–6360 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Theisen, L. A., Martin, S. J. & Hillman, A. R. A model for the quartz crystal microbalance frequency response to wetting characteristics of corrugated surfaces. Anal. Chem. 76, 796–804 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Urbakh, M. & Daikhin, L. Surface morphology and the quartz crystal microbalance response in liquids. Colloids Surf. A 134, 75–84 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Daikhin, L. et al. Influence of roughness on the admittance of the quartz crystal microbalance immersed in liquids. Anal. Chem. 74, 554–561 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Levi, M. D. et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv. Energy Mater. 5, 1400815 (2014).

    Article  Google Scholar 

  19. 19

    Levi, M. D., Sigalov, S., Aurbach, D. & Daikhin, L. In situ electrochemical quartz crystal admittance methodology for tracking compositional and mechanical changes in porous carbon electrodes. J. Phys. Chem. C 117, 14876–14889 (2013).

    CAS  Article  Google Scholar 

  20. 20

    Levi, M. D. et al. In situ tracking of ion insertion in iron phosphate olivine electrodes via electrochemical quartz crystal admittance. J. Phys. Chem. C 117, 1247–1256 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Kanazawa, K. & Cho, N.-J. Quartz crystal microbalance as a sensor to characterize macromolecular assembly dynamics. J. Sensors 2009, 824947 (2009).

    Article  Google Scholar 

  22. 22

    Keiji Kanazawa, K. & GordonIi, J. G. The oscillation frequency of a quartz resonator in contact with liquid. Anal. Chim. Acta 175, 99–105 (1985).

    Article  Google Scholar 

  23. 23

    Hillman, A. R. The EQCM: electrogravimetry with a light touch. J. Solid State Electrochem. 15, 1647–1660 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Hillman, A. R., Efimov, I. & Ryder, K. S. Time-scale-and temperature-dependent mechanical properties of viscoelastic poly (3, 4-ethylenedioxythiophene) films. J. Am. Chem. Soc. 127, 16611–16620 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Inzelt, G. Electroanalytical Methods 257–270 (Springer, 2010).

    Google Scholar 

  26. 26

    Johannsmann, D. The Quartz Crystal Microbalance in Soft Matter Research (Springer, 2014).

    Google Scholar 

  27. 27

    Marx, K. A. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4, 1099–1120 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Voinova, M. V., Rodahl, M., Jonson, M. & Kasemo, B. Viscoelastic acoustic response of layered polymer films at fluid–solid interfaces: continuum mechanics approach. Phys. Scr. 59, 391–396 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Eisele, N. B., Andersson, F. I., Frey, S. & Richter, R. P. Viscoelasticity of thin biomolecular films: a case study on nucleoporin phenylalanine-glycine repeats grafted to a histidine-tag capturing QCM-D sensor. Biomacromolecules 13, 2322–2332 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Reviakine, I., Johannsmann, D. & Richter, R. P. Hearing what you cannot see and visualizing what you hear: interpreting quartz crystal microbalance data from solvated interfaces. Anal. Chem. 83, 8838–8848 (2011).

    CAS  Article  Google Scholar 

  31. 31

    Arnau, A. (ed.) Piezoelectric Transducers and Applications 2nd edn, 532 (Springer, 2008).

  32. 32

    Levi, M. D. et al. Collective phase transition dynamics in microarray composite LixFePO4 electrodes tracked by in situ electrochemical quartz crystal admittance. J. Phys. Chem. C 117, 15505–15514 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Levi, M. D. et al. Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons. J. Am. Chem. Soc. 132, 13220–13222 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Levi, M. D., Salitra, G., Levy, N., Aurbach, D. & Maier, J. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nature Mater. 8, 872–875 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Levi, M. D., Sigalov, S., Salitra, G., Elazari, R. & Aurbach, D. Assessing the solvation numbers of electrolytic ions confined in carbon nanopores under dynamic charging conditions. J. Phys. Chem. Lett. 2, 120–124 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Bazant, M. Z. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc. Chem. Res. 46, 1144–1160 (2013).

    CAS  Article  Google Scholar 

  37. 37

    Gogotsi, Y. What nano can do for energy storage. ACS Nano 8, 5369–5371 (2014).

    CAS  Article  Google Scholar 

  38. 38

    Griffin, J. M. et al. In situ NMR and electrochemical quartz crystal microbalance reveal the structure of the electric double-layer in supercapacitor electrodes. Nature Mater. 14, 812–819 (2015).

    CAS  Article  Google Scholar 

  39. 39

    Kondrat, C., Wu, P., Qiao, R. & Kornyshev, A. A. Accelerating charging dynamics in subnanometre pores. Nature Mater. 13, 387–393 (2014).

    CAS  Article  Google Scholar 

  40. 40

    Tsai, W.-Y., Taberna, P.-L. & Simon, P. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons. J. Am. Chem. Soc. 136, 8722–8728 (2014).

    CAS  Article  Google Scholar 

  41. 41

    Sahimi, M. Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches (John Wiley, 2012).

    Google Scholar 

  42. 42

    Hillman, A. R., Mohamoud, M. A. & Efimov, I. Time–temperature superposition and the controlling role of solvation in the viscoelastic properties of polyaniline thin films. Anal. Chem. 83, 5696–5707 (2011).

    CAS  Article  Google Scholar 

  43. 43

    Shpigel, N. et al. Non-invasive in situ dynamic monitoring of elastic properties of composite battery electrodes by EQCM-D. Angew. Chem. Int. Ed. 54, 12353–12356 (2015).

    CAS  Article  Google Scholar 

  44. 44

    Shu, D., Chung, K. Y., Cho, W. I. & Kim, K.-B. Electrochemical investigations on electrostatic spray deposited LiMn2O4 films. J. Power Sources 114, 253–263 (2003).

    CAS  Article  Google Scholar 

  45. 45

    Subramania, A., Karthick, S. & Angayarkanni, N. Preparation and electrochemical behaviour of LiMn2O4 thin film by spray pyrolysis method. Thin Solid Films 516, 8295–8298 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Yamamura, S., Koshika, H., Nishizawa, M., Matsue, T. & Uchida, I. In situ conductivity measurements of LiMn2O4 thin films during lithium insertion/extraction by using interdigitated microarray electrodes. J. Solid State Electrochem. 2, 211–215 (1998).

    CAS  Article  Google Scholar 

  47. 47

    Stefaniuk, T., Wrobel, P., Gorecka, E. & Szoplik, T. Optimum deposition conditions of ultrasmooth silver nanolayers. Nanoscale Res. Lett. 9, 153 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the German-Israeli Foundation for Scientific Research and Development (GIF) via Research Grant Agreement No. 1-1237-302.5/2014. N.J. and V.P. thank E. Arzt (INM) for his continuing support and thank the Prof. Lenz Foundation. We are also grateful to B. Kasemo, P. Simon, A. Arnau, G. Ohlsson and G. Avrushchenko for critical reading of our paper and providing important feedback to authors.

Author information

Affiliations

Authors

Contributions

M.D.L., D.A., E.L. and V.P. designed the research for the EQCM-D and AFM methods. N.S., S.S. and N.J. performed the EQCM-D work. O.G., P.P., M.M. and A.J. designed and performed supporting AFM experiments. L.D. developed hydrodynamic admittance models to fit to the experimental data. All authors contributed to discussion of the data and writing the paper.

Corresponding authors

Correspondence to Mikhael D. Levi or Doron Aurbach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 912 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shpigel, N., Levi, M., Sigalov, S. et al. In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes. Nature Mater 15, 570–575 (2016). https://doi.org/10.1038/nmat4577

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing