Commentary | Published:

Toxicity of organometal halide perovskite solar cells

Nature Materials volume 15, pages 247251 (2016) | Download Citation

In the last few years, the advent of metal halide perovskite solar cells has revolutionized the prospects of next-generation photovoltaics. As this technology is maturing at an exceptional rate, research on its environmental impact is becoming increasingly relevant.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Nature Nanotech. 10, 391–402 (2015).

  2. 2.

    et al. Science 348, 1234–1237 (2015).

  3. 3.

    Environmental Health Criteria 3: Lead (World Health Organization, 1977).

  4. 4.

    , & Monograph for UKPID: Lead (National Poisons Information Service (London Centre), 1996).

  5. 5.

    , & Lead: assessing the environmental burden of disease at national and local levels (World Health Organization, 2003).

  6. 6.

    Exposure to lead: a major public health concern (World Health Organization, 2010).

  7. 7.

    & Tin and inorganic tin compounds (World Health Organization, 2005).

  8. 8.

    et al. Sci. Rep. 6, 18721 (2016).

  9. 9.

    , , & ACS Nano 9, 1955–1963 (2015).

  10. 10.

    et al. Angew. Chem. Int. Ed. 54, 8208–8212 (2015).

  11. 11.

    et al. Adv. Energy Mater. 5, 1500477 (2015).

  12. 12.

    Int. J. Sol. Energy 12, 259–281 (1992).

  13. 13.

    & Int. J. Toxicol. 28, 259–265 (2009).

  14. 14.

    et al. J. Phys. Chem. Lett. 6, 1543–1547 (2015).

  15. 15.

    et al. Toxicol. Res. (2015).

  16. 16.

    & First Solar's CdTe module manufacturing experience; environmental, health and safety results. In Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE 575–578 (IEEE, 2000).

  17. 17.

    The Recycling Advantage. First Solar

  18. 18.

    , & Lancet 332, 157–158 (1988).

  19. 19.

    & Medical Toxicology: Diagnosis and Treatment of Human Poisoning (Elsevier, 1988).

  20. 20.

    , & J. Clin. Invest. 58, 260–270 (1976).

  21. 21.

    in Goodman and Gilman's The Pharmacological Basis of Therapeutics 6th edn (eds Goodman Gilman, A., Goodman, L. S. & Gilman, A.) 1615–1637 (Macmillan, 1980).

  22. 22.

    N. Engl. J. Med. 289, 1289–1293 (1973).

  23. 23.

    Toxicol. Appl. Pharmacol. 27, 366–379 (1974).

  24. 24.

    et al. Clin. Immunol. Immunopathol. 20, 39–48 (1981).

  25. 25.

    & Nuklearmedizin 10, 286–297 (1971).

  26. 26.

    , & Microbiol. Rev. 59, 201–222 (1995).

  27. 27.

    Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection. Annals of the ICRP 24, 1–482 (1994).

  28. 28.

    & J. Nutr. 115, 615–624 (1985).

  29. 29.

    , , & J. Environ. Sci. Health. A 36, 1767–1786 (2001).

  30. 30.

    The ICRP Database of Dose Coefficients: Workers and Members of the Public, version 1.0, an extension of ICRP Publications 68 and 72. Health Phys. 78, 343 (2000).

  31. 31.

    CDC response to advisory committee on childhood lead poisoning prevention recommendations in “Low level lead exposure harms children: a renewed call of primary prevention” (CDC, 2012).

  32. 32.

    Tin addendum in Safety evaluation of certain food additives and contaminants Ch. 5 (WHO, 2001).

  33. 33.

    Opinion of the Scientific Panel on Dietetic products, nutrition and allergies [NDA] related to the tolerable upper intake level of tin. EFSA Journal (2005).

  34. 34.

    , , & Sol. Energy Mater. Sol. Cells 137, 303–310 (2015).

  35. 35.

    , & Energy Environ. Sci. 8, 1953–1968 (2015).

  36. 36.

    et al. Adv. Energy Mater. 5, 1501119 (2015).

  37. 37.

    et al. ChemSusChem 8, 3882–3891 (2015).

  38. 38.

    & J. Am. Chem. Soc. 61, 731–738 (1939).

  39. 39.

    , , & PLoS ONE 7, e41733 (2012).

  40. 40.

    J. Phys. Chem. Lett. 6, 3546–3548 (2015).

  41. 41.

    , & Solubility control of Cu, Zn, Cd and Pb in contaminated soils. Eur. J. Soil Sci. 48, 337–346 (1997).

  42. 42.

    & Environ. Pollut. 71, 91–130 (1991).

  43. 43.

    et al. Nature 496, 498–503 (2013).

  44. 44.

    et al. Energy Environ. Sci. 7, 3659–3665 (2014).

  45. 45.

    Energy Policy 28, 1051–1058 (2000).

  46. 46.

    et al. Chem. Mater. 27, 5122–5130 (2015).

  47. 47.

    & Chem. Soc. Rev. 42, 7446–7467 (2013).

  48. 48.

    et al. Chem. Eng. J. 178, 443–450 (2011).

  49. 49.

    et al. Science 350, 944–948 (2015).

  50. 50.

    et al. Adv. Mater. 27, 6806–6813 (2015).

Download references

Acknowledgements

We are very grateful to our co-workers at Hasselt University and the University of Liège, and we thank the GIGA-R zebrafish facility for supporting the toxicology-related activities concerning perovskites. In particular, we thank D. Duy Thanh (University of Liège), Prof. J. Manca (Hasselt University) and Prof. H.-G. Boyen (Hasselt University). We would also like to thank Prof. H. Snaith (University of Oxford) for fruitful discussions. B.C. and A.E. are postdoctoral research fellows of the Research Foundation Flanders (FWO). M.M. is a Chercheur Qualifié du F.N.R.S.

Author information

Affiliations

  1. Aslihan Babayigit, Anitha Ethirajan and Bert Conings are at the Hasselt University, Institute for Materials Research, Wetenschapspark 1, 3590 Diepenbeek, Belgium

    • Aslihan Babayigit
    • , Anitha Ethirajan
    •  & Bert Conings
  2. Marc Muller is at the University of Liège, Laboratory for Organogenesis and Regeneration, GIGA-Research, B34, Avenue de l'Hôpital 1, 4000 Sart-Tilman, Belgium

    • Marc Muller

Authors

  1. Search for Aslihan Babayigit in:

  2. Search for Anitha Ethirajan in:

  3. Search for Marc Muller in:

  4. Search for Bert Conings in:

Corresponding author

Correspondence to Bert Conings.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nmat4572

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing