Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photoexcited quantum dots for killing multidrug-resistant bacteria

This article has been updated

Abstract

Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics1,2,3,4. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific5,6,7,8. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: CdTe-2.4 quantum dots induce light-activated inhibition of growth in MDR bacterial strains.
Figure 2: The effect of CdTe-2.4 is specific to the reduction and oxidation potentials.
Figure 3: Formation of intracellular redox species which do not effect HEK 293T cells, and a photo-proliferative response using CuInS2.

Change history

  • 04 February 2016

    In the original version of this Letter published online, the x axis of Fig. 2e was labelled incorrectly and the middle and righthand labels should have read 'CdSe-2.6' and 'CdSe-2.4', respectively. This has been corrected in all versions of the Letter.

References

  1. 1

    LeClerc, J. E., Li, B., Payne, W. L. & Cebula, T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208–1211 (1996).

    CAS  Article  Google Scholar 

  2. 2

    Chatterjee, A. et al. Convergent transcription confers a bistable switch in Enterococcus faecalis conjugation. Proc. Natl Acad. Sci. USA 108, 9721–9726 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Courtney, C. M. & Chatterjee, A. Sequence-specific peptide nucleic acid-based antisense inhibitors of TEM-1 β-Lactamase and mechanism of adaptive resistance. ACS Infect. Dis. 1, 253–263 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Global Tuberculosis Report (WHO, 2012).

  5. 5

    Antibiotic Resistance Threats (CDC, 2013).

  6. 6

    He, M. et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nature Genet. 45, 109–113 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Chang, H.-H. et al. Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiol. Mol. Biol. Rev. 79, 101–116 (2015).

    CAS  Article  Google Scholar 

  8. 8

    Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nature Rev. Microbiol. 13, 42–51 (2015).

    CAS  Article  Google Scholar 

  9. 9

    Falagas, M. E. & Bliziotis, I. A. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int. J. Antimicrob. Agents 29, 630–636 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Yu, B. P. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74, 139–162 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Thannickal, V. J. & Fanburg, B. L. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1005–L1028 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Imlay, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nature Rev. Microbiol. 11, 443–454 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Valko, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Apel, K. & Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Dwyer, D. J., Belenky, P. A., Yang, J. H., Macdonald, I. C. & Martell, J. D. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl Acad. Sci. USA 111, E2100–E2109 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Sun, Q. C. et al. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals. Nano Lett. 14, 101–106 (2014).

    Article  Google Scholar 

  18. 18

    Huang, X., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Loo, C., Lowery, A., Halas, N., West, J. & Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–711 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J. & Wyatt, M. D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325–327 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Sun, Q.-C., Ding, Y., Goodman, S. M., H.Funke, H. & Nagpal, P. Copper plasmonics and catalysis: role of electron–phonon interactions in dephasing localized surface plasmons. Nanoscale 6, 12450–12457 (2014).

    CAS  Article  Google Scholar 

  22. 22

    Ipe, B. I., Lehnig, M. & Niemeyer, C. M. On the generation of free radical species from quantum dots. Small 1, 706–709 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Rengifo-Herrera, J. A. et al. A comparison of solar photocatalytic inactivation of waterborne E. coli using Tris (2,2′-bipyridine)ruthenium(II), Rose Bengal, and TiO2 . J. Sol. Energy Eng. 129, 135–140 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Walker, G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48, 60–93 (1984).

    CAS  Google Scholar 

  25. 25

    Lu, Z., Li, C. M., Bao, H., Qiao, Y. & Toh, Y. Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir 5445–5452 (2008).

  26. 26

    Brayner, R. et al. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866–870 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Medintz, I. L. & Mattoussi, H. Quantum dot-based resonance energy transfer and its growing application in biology. Phys. Chem. Chem. Phys. 11, 17–45 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Lovrić, J. et al. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 83, 377–385 (2005).

    Article  Google Scholar 

  29. 29

    Cho, S. J. et al. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23, 1974–1980 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 5.0 (EUCAST, 2015); http://www.eucast.org.

  31. 31

    Singh, V., Beltran, I. J. C., Ribot, J. C. & Nagpal, P. Photocatalysis deconstructed: design of a new selective catalyst for artificial photosynthesis. Nano Lett. 14, 597–603 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from W. M. Keck Foundation and University of Colorado startup funds, and NSF Graduate fellowship (DGE 1144083) to C.M.C. We would also like to thank T. Nahreini and S. Bryant for allowing use of their cell culture facilities.

Author information

Affiliations

Authors

Contributions

P.N. and A.C. conceived the idea and designed the experiments. C.M.C., S.M.G. and J.A.M. conducted the experiments. N.E.M. prepared the clinical isolates and provided the samples. P.N., A.C., C.M.C. and S.M.G. analysed the experimental data and wrote the paper. All the authors discussed the results and edited the manuscript.

Corresponding authors

Correspondence to Anushree Chatterjee or Prashant Nagpal.

Ethics declarations

Competing interests

The authors have filed a patent on this technology.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2449 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Courtney, C., Goodman, S., McDaniel, J. et al. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nature Mater 15, 529–534 (2016). https://doi.org/10.1038/nmat4542

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing