Chemical vapour deposition of zeolitic imidazolate framework thin films

Abstract

Integrating metal–organic frameworks (MOFs) in microelectronics has disruptive potential because of the unique properties of these microporous crystalline materials. Suitable film deposition methods are crucial to leverage MOFs in this field. Conventional solvent-based procedures, typically adapted from powder preparation routes, are incompatible with nanofabrication because of corrosion and contamination risks. We demonstrate a chemical vapour deposition process (MOF-CVD) that enables high-quality films of ZIF-8, a prototypical MOF material, with a uniform and controlled thickness, even on high-aspect-ratio features. Furthermore, we demonstrate how MOF-CVD enables previously inaccessible routes such as lift-off patterning and depositing MOF films on fragile features. The compatibility of MOF-CVD with existing infrastructure, both in research and production facilities, will greatly facilitate MOF integration in microelectronics. MOF-CVD is the first vapour-phase deposition method for any type of microporous crystalline network solid and marks a milestone in processing such materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Chemical vapour deposition of ZIF-8 thin films.
Figure 2: Characterization of chemical vapour deposited ZIF-8 thin films.
Figure 3: Conformal ZIF-8 thin films deposition on high-aspect-ratio pillar arrays.
Figure 4: Vapour–solid reaction of zinc oxide and HmIM studied by in situ powder X-ray diffraction (PXRD).
Figure 5: MOF integration routes enabled by the MOF-CVD process: lift-off patterning and coating of fragile features.

References

  1. 1

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Google Scholar 

  2. 2

    Liu, J. et al. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014).

    CAS  Google Scholar 

  3. 3

    Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nature Chem. 4, 83–89 (2011).

    Google Scholar 

  4. 4

    Li, J.-R., Sculley, J. & Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2011).

    Google Scholar 

  5. 5

    Peplow, M. Materials science: The hole story. Nature 520, 148–150 (2015).

    CAS  Google Scholar 

  6. 6

    Bétard, A. & Fischer, R. A. Metal–organic framework thin films: From fundamentals to applications. Chem. Rev. 112, 1055–1083 (2012).

    Google Scholar 

  7. 7

    Falcaro, P. et al. MOF positioning technology and device fabrication. Chem. Soc. Rev. 43, 5513–5560 (2014).

    CAS  Google Scholar 

  8. 8

    Stavila, V., Talin, A. A. & Allendorf, M. D. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 43, 5994–6010 (2014).

    CAS  Google Scholar 

  9. 9

    Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    CAS  Google Scholar 

  10. 10

    Baklanov, M. R., Adelmann, C., Zhao, L. & De Gendt, S. Advanced interconnects: Materials, processing, and reliability. ECS J. Solid State Sci. Technol. 4, Y1–Y4 (2014).

    Google Scholar 

  11. 11

    Usman, M., Mendiratta, S. & Lu, K.-L. Metal–organic frameworks: New interlayer dielectric materials. ChemElectroChem 2, 786–788 (2015).

    CAS  Google Scholar 

  12. 12

    Talin, A. A. et al. Tunable electrical conductivity in metal–organic framework thin-film devices. Science 343, 66–69 (2014).

    CAS  Google Scholar 

  13. 13

    Allendorf, M. D., Schwartzberg, A., Stavila, V. & Talin, A. A. A roadmap to implementing metal–organic frameworks in electronic devices: Challenges and critical directions. Chemistry 17, 11372–11388 (2011).

    CAS  Google Scholar 

  14. 14

    Semiconductor Industry Association, The International Technology Roadmap for Semiconductors (2013); http://www.itrs.net

    Google Scholar 

  15. 15

    Pierson, H. O. Handbook of Chemical Vapor Deposition (William Andrew, Elsevier, 1997).

    Google Scholar 

  16. 16

    Martin, P. M. Handbook of Technologies for Films and Coatings (William Andrew, Elsevier, 2005).

    Google Scholar 

  17. 17

    Hirsch, A. The era of carbon allotropes. Nature Mater. 9, 868–871 (2010).

    CAS  Google Scholar 

  18. 18

    Coclite, A. M. et al. 25th anniversary article: CVD polymers: A new paradigm for surface modification and device fabrication. Adv. Mater. 25, 5392–5423 (2013).

    CAS  Google Scholar 

  19. 19

    Lee, B. H., Yoon, B., Abdulagatov, A. I., Hall, R. a. & George, S. M. Growth and properties of hybrid organic–inorganic metalcone films using molecular layer deposition techniques. Adv. Funct. Mater. 23, 532–546 (2013).

    CAS  Google Scholar 

  20. 20

    Salmi, L. D. et al. Studies on atomic layer deposition of MOF-5 thin films. Microporous Mesoporous Mater. 182, 147–154 (2013).

    CAS  Google Scholar 

  21. 21

    Kojima, T., Choi, W. & Kawano, M. Single-crystal growth of coordination networks via the gas phase and dependence of iodine encapsulation on the crystal size. Chem. Commun. 50, 13793–13796 (2014).

    CAS  Google Scholar 

  22. 22

    Welte, L. et al. Organization of coordination polymers on surfaces by direct sublimation. Adv. Mater. 21, 2025–2028 (2009).

    CAS  Google Scholar 

  23. 23

    Fischer, D., Meyer, L. V., Jansen, M. & Müller-Buschbaum, K. Highly luminescent thin films of the dense framework 3[EuIm2] with switchable transparency formed by scanning femtosecond-pulse laser deposition. Angew. Chem. Int. Ed. 53, 706–710 (2014).

    CAS  Google Scholar 

  24. 24

    Meyer, L. V. et al. Organic melt, electride, and CVD induced in situ deposition of luminescent lanthanide imidazolate MOFs on nanostructured alumina. Inorg. Chem. Front. 2, 237–245 (2015).

    CAS  Google Scholar 

  25. 25

    Park, K. S. et al. From the cover: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    CAS  Google Scholar 

  26. 26

    Reboul, J. et al. Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication. Nature Mater. 11, 717–723 (2012).

    CAS  Google Scholar 

  27. 27

    Stassen, I. et al. Solvent-free synthesis of supported ZIF-8 films and patterns through transformation of deposited zinc oxide precursors. CrystEngComm 15, 9308–9311 (2013).

    CAS  Google Scholar 

  28. 28

    Khaletskaya, K. et al. Self-directed localization of ZIF-8 thin film formation by conversion of ZnO nanolayers. Adv. Funct. Mater. 24, 4804–4811 (2014).

    CAS  Google Scholar 

  29. 29

    Hou, C., Xu, Q., Peng, J., Ji, Z. & Hu, X. (110)-oriented ZIF-8 thin films on ITO with controllable thickness. ChemPhysChem 14, 140–144 (2013).

    CAS  Google Scholar 

  30. 30

    Eslava, S. et al. Metal–organic framework ZIF-8 films as low-κ dielectrics in microelectronics. Chem. Mater. 25, 27–33 (2013).

    CAS  Google Scholar 

  31. 31

    Shekhah, O. & Eddaoudi, M. The liquid phase epitaxy method for the construction of oriented ZIF-8 thin films with controlled growth on functionalized surfaces. Chem. Commun. 49, 10079–10081 (2013).

    CAS  Google Scholar 

  32. 32

    Bux, H. et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 131, 16000–16001 (2009).

    CAS  Google Scholar 

  33. 33

    Bux, H., Chmelik, C., Van Baten, J. M., Krishna, R. & Caro, J. Novel MOF-membrane for molecular sieving predicted by IR-diffusion studies and molecular modeling. Adv. Mater. 22, 4741–4743 (2010).

    CAS  Google Scholar 

  34. 34

    Johnson, R. W., Hultqvist, A. & Bent, S. F. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 17, 236–246 (2014).

    CAS  Google Scholar 

  35. 35

    Thommes, M. & Cychosz, K. a. Physical adsorption characterization of nanoporous materials: Progress and challenges. Adsorption 20, 233–250 (2014).

    CAS  Google Scholar 

  36. 36

    Rouquerol, F., Rouquerol, J. & Sing, K. Adsorption by Powders and Porous Solids (Academic, 1999).

    Google Scholar 

  37. 37

    Nezbeda, I. & Aim, K. Perturbed hard-sphere equations of state of real fluids. II. Effective hard-sphere diameters and residual properties. Fluid Phase Equilib. 17, 1–18 (1984).

    CAS  Google Scholar 

  38. 38

    Jiménez, P., Roux, M. V. & Turrión, C. Thermochemical properties of N-heterocyclic compounds IV. Enthalpies of combustion, vapour pressures and enthalpies of sublimation, and enthalpies of formation of 2-methylimidazole and 2-ethylimidazole. J. Chem. Thermodyn. 24, 1145–1149 (1992).

    Google Scholar 

  39. 39

    Hughes, J. T., Bennett, T. D., Cheetham, A. K. & Navrotsky, A. Thermochemistry of zeolitic imidazolate frameworks of varying porosity. J. Am. Chem. Soc. 135, 598–601 (2013).

    CAS  Google Scholar 

  40. 40

    Shi, Q., Chen, Z., Song, Z., Li, J. & Dong, J. Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angew. Chem. Int. Ed. 50, 672–675 (2011).

    CAS  Google Scholar 

  41. 41

    Meng, X. & Xiao, F. S. Green routes for synthesis of zeolites. Chem. Rev. 114, 1521–1543 (2014).

    CAS  Google Scholar 

  42. 42

    Mottillo, C. et al. Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal–organic frameworks from metal (Zn, Co) oxides. Green Chem. 15, 2121–2131 (2013).

    CAS  Google Scholar 

  43. 43

    Cliffe, M. J., Mottillo, C., Stein, R. S., Bučar, D.-K. & Friščić, T. Accelerated aging: A low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal–organic materials. Chem. Sci. 3, 2495–2500 (2012).

    CAS  Google Scholar 

  44. 44

    Qi, F., Stein, R. S. & Friščić, T. Mimicking mineral neogenesis for the clean synthesis of metal–organic materials from mineral feedstocks: Coordination polymers, MOFs and metal oxide separation. Green Chem. 16, 121–132 (2013).

    Google Scholar 

  45. 45

    Lu, G., Farha, O. K., Zhang, W., Huo, F. & Hupp, J. T. Engineering ZIF-8 thin films for hybrid MOF-based devices. Adv. Mater. 24, 3970–3974 (2012).

    CAS  Google Scholar 

  46. 46

    Doherty, C. M. et al. Combining UV lithography and an imprinting technique for patterning metal–organic frameworks. Adv. Mater. 25, 4701–4705 (2013).

    CAS  Google Scholar 

  47. 47

    Keitz, B. K., Yu, C. J., Long, J. R. & Ameloot, R. Lithographic deposition of patterned metal–organic framework coatings using a photobase generator. Angew. Chem. Int. Ed. 53, 5561–5565 (2014).

    CAS  Google Scholar 

  48. 48

    Migliorini, E. et al. Acceleration of neuronal precursors differentiation induced by substrate nanotopography. Biotechnol. Bioeng. 108, 2736–2746 (2011).

    CAS  Google Scholar 

  49. 49

    Paek, J. & Kim, J. Microsphere-assisted fabrication of high aspect-ratio elastomeric micropillars and waveguides. Nature Commun. 5, 3324 (2014).

    Google Scholar 

  50. 50

    Lee, H., Lee, B. P. & Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448, 338–341 (2007).

    CAS  Google Scholar 

  51. 51

    Lu, G. & Hupp, J. Metal–organic frameworks as sensors: A ZIF-8 based Fabry–Pérot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 132, 7832–7833 (2010).

    CAS  Google Scholar 

  52. 52

    Klug, H. P. & Alexander, L. E. X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials 2nd edn (Wiley-Interscience, 1974).

    Google Scholar 

  53. 53

    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nature Methods 9, 676–682 (2012).

    CAS  Google Scholar 

  54. 54

    Nečas, D. & Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012).

    Google Scholar 

  55. 55

    Campagnol, N., Stassen, I., Binnemans, K., de Vos, D. E. & Fransaer, J. Metal–organic framework deposition on dealloyed substrates. J. Mater. Chem. A 3, 19747–19753 (2015).

    CAS  Google Scholar 

  56. 56

    Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 149, 134–141 (2012).

    CAS  Google Scholar 

  57. 57

    Norby, P. In-situ time resolved synchrotron powder diffraction studies of syntheses and chemical reactions. Mater. Sci. Forum 228–231, 147–152 (1996).

    Google Scholar 

  58. 58

    Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969).

    CAS  Google Scholar 

  59. 59

    Young, R. A. The Rietveld Method (International Union of Crystallography Monographs on Crystallography, 1993).

    Google Scholar 

  60. 60

    Hachuła, B., Nowak, M. & Kusz, J. Crystal and molecular structure analysis of 2-methylimidazole. J. Chem. Crystallogr. 40, 201–206 (2010).

    Google Scholar 

  61. 61

    O’Connor, B. H. & Raven, M. D. Application of the Rietveld refinement procedure in assaying powdered mixtures. Powder Diffr. 3, 2–6 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Agency of Innovation by Science and Technology (IWT) for support in SBO project MOFShape. I.S. thanks Research Foundation—Flanders (FWO) for a PhD fellowship. R.A. is grateful to KU Leuven for a starting grant. The authors thank imec for support. In particular, the ESTORE team is acknowledged for their assistance in providing the substrates and the imec MCA department for TEM and TOF-SIMS measurements. D.D.V. is grateful to the Belgian Science Policy Office (BELSPO) for support in IAP project 7/05 and to KU Leuven for CASAS Methusalem funding. S.D.F. is grateful to the European Research Council (ERC) for funding (Grant Agreement No. 340324).

Author information

Affiliations

Authors

Contributions

I.S. and R.A. conceived and designed the experiments. I.S. carried out and analysed all film deposition and characterization experiments. M.S., P.F. and R.A. designed and conducted the X-ray diffraction measurements. M.S. and I.S. analysed the X-ray diffraction data. H.V.G. and W.V. conducted the atomic force microscopy experiments. G.G. and P.F. designed and manufactured the photolithography and soft lithography patterned substrates. The manuscript was primarily written by I.S. and R.A., with the input of all authors.

Corresponding author

Correspondence to Rob Ameloot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5195 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stassen, I., Styles, M., Grenci, G. et al. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nature Mater 15, 304–310 (2016). https://doi.org/10.1038/nmat4509

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing