Enhanced energy transport in genetically engineered excitonic networks


One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Molecular models of the genetically engineered M13 viruses.
Figure 2: Steady-state spectra and fluorescence quenching at room temperature.
Figure 3: Steady-state fluorescence data at room temperature showing exciton harvesting.
Figure 4: Transient-absorption spectra at room temperature.
Figure 5: Comparison of numerical simulations of classical and quantum transport theories for M13SF to the experiment.


  1. 1

    Wasielewski, M. R. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 1910–1921 (2009).

  2. 2

    Goodson, T. G. Optical excitations in organic dendrimers investigated by time-resolved and nonlinear optical spectroscopy. Acc. Chem. Res. 38, 99–107 (2005).

  3. 3

    Eisele, D. M. et al. Utilizing redox-chemistry to elucidate the nature of exciton transitions in supramolecular dye nanotubes. Nature Chem. 4, 655–662 (2012).

  4. 4

    Woller, J. G., Hannestad, J. K. & Albinsson, B. Self-assembled nanoscale DNA-porphyrin complex for artificial light harvesting. J. Am. Chem. Soc. 135, 2759–2768 (2013).

  5. 5

    Miller, R. A., Presley, A. D. & Francis, M. B. Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J. Am. Chem. Soc. 129, 3104–3109 (2007).

  6. 6

    Ma, Y. Z., Miller, R. A., Fleming, G. R. & Francis, M. B. Energy transfer dynamics in light-harvesting assemblies templated by the tobacco mosaic virus coat protein. J. Phys. Chem. B 112, 6887–6892 (2008).

  7. 7

    Nam, Y. S. et al. Virus-templated assembly of porphyrins into light-harvesting nanoantennae. J. Am. Chem. Soc. 132, 1462–1463 (2010).

  8. 8

    Lee, Y. J. et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009).

  9. 9

    Dang, X. N. et al. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nature Nanotech. 6, 377–384 (2011).

  10. 10

    Nam, Y. S. et al. Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nature Nanotech. 5, 340–344 (2010).

  11. 11

    Nam, Y. S. et al. Virus-templated iridium oxide-gold hybrid nanowires for electrochromic application. Nanoscale 4, 3405–3409 (2012).

  12. 12

    Ghosh, D. et al. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nature Nanotech. 7, 677–682 (2012).

  13. 13

    Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

  14. 14

    Olaya-Castro, A., Lee, C. F., Fassioli Olsen, F. & Johnson, N. F. Efficiency of energy transfer in a light-harvesting system under quantum coherence. Phys. Rev. B 78, 085115 (2008).

  15. 15

    Caruso, F., Chin, A. W., Datta, A., Huelga, S. F. & Plenio, M. B. Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport. J. Chem. Phys. 131, 105106 (2009).

  16. 16

    Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009).

  17. 17

    Walschaers, M., Diaz, J. F., Mulet, R. & Buchleitner, A. Optimally designed quantum transport across disordered networks. Phys. Rev. Lett. 111, 180601 (2013).

  18. 18

    Blankenship, R. E. Molecular Mechanisms of Photosynthesis (Blackwell Science, 2002).

  19. 19

    Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nature Chem. 3, 763–774 (2011).

  20. 20

    Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010).

  21. 21

    Marvin, D. A., Welsh, L. C., Symmons, M. F., Scott, W. R. P. & Straus, S. K. Molecular structure of fd (f1, M13) filamentous bacteriophage refined with respect to X-ray fibre diffraction and solid-state NMR data supports specific models of phage assembly at the bacterial membrane. J. Mol. Biol. 355, 294–309 (2006).

  22. 22

    Lankiewicz, L., Malicka, J. & Wiczk, W. Fluorescence resonance energy transfer in studies of inter-chromophoric distances in biomolecules. Acta Biochim. Pol. 44, 477–489 (1997).

  23. 23

    Turro, N. J., Ramamurthy, V. & Scaiano, J. C. Modern Molecular Photochemistry of Organic Molecules (Univ. Science Books, 2010).

  24. 24

    Spence, M. T. Z. & Johnson, I.D. The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies 11th edn (Live Technologies Corporation, 2010).

  25. 25

    Haken, H. & Reineker, P. Coupled coherent and incoherent motion of excitons and its influence on line shape of optical-absorption. Z. Phys. 249, 253–268 (1972).

  26. 26

    Haken, H. & Strobl, G. Exactly solvable model for coherent and incoherent exciton motion. Z. Phys. 262, 135–148 (1973).

  27. 27

    Christensson, N., Kauffmann, H. F., Pullerits, T. & Mancal, T. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012).

  28. 28

    Tiwari, V., Peters, W. K. & Jonas, D. M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl Acad. Sci. USA 110, 1203–1208 (2013).

  29. 29

    Halpin, A. et al. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nature Chem. 6, 196–201 (2014).

  30. 30

    Huang, Y. et al. Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett. 5, 1429–1434 (2005).

  31. 31

    Lapini, A., Foggi, P., Bussotti, L., Righini, R. & Dei, A. Relaxation dynamics in three polypyridyl iron(II)-based complexes probed by nanosecond and sub-picosecond transient absorption spectroscopy. Inorg. Chim. Acta 361, 3937–3943 (2008).

  32. 32

    Marcelli, A., Foggi, P., Moroni, L., Gellini, C. & Salvi, P. R. Excited-state absorption and ultrafast relaxation dynamics of porphyrin, diprotonated porphyrin, and tetraoxaporphyrin dication. J. Phys. Chem. A 112, 1864–1872 (2008).

  33. 33

    Gentili, P. L., Bussotti, L., Ruzziconi, R., Spizzichino, S. & Foggi, P. Study of the photobehavior of a newly synthesized chiroptical molecule: (E)-(R-p, R-p)-1,2-Bis{4-methyl-[2]paracyclo[2](5,8)quinolinophan-2-yl}ethene. J. Phys. Chem. A 113, 14650–14656 (2009).

  34. 34

    May, V. & Kühn, O. Charge and Energy Transfer Dynamics in Molecular Systems 2nd edn (Wiley-VCH, John Wiley, 2004).

  35. 35

    Forster, T. Zwischenmolekulare Energiewanderung Und Fluoreszenz. Ann. Phys. 2, 55–75 (1948).

  36. 36

    Sener, M. K. et al. Excitation migration in trimeric cyanobacterial photosystem I. J. Chem. Phys. 120, 11183–11195 (2004).

  37. 37

    Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

Download references


This work was supported from Eni, S.p.A. (Italy) through the MIT Energy Initiative Program. H.P. thanks Kwanjeong Educational Foundation for its financial support, and G. W. Hwang for allowing us to use a fluorometer. F.C. has been supported by EU FP7 Marie-Curie Programme (Career Integration Grant) and by MIUR-FIRB grant (Project No. RBFR10M3SB).

Author information

H.P., N.H., P.F.S., M.M., R.F., S.L. and A.M.B. conceived the work. P.F.S., P.F., S.L. and A.M.B. supervised the overall work. H.P. and N.H. designed the experiments including protocols. H.P. prepared all the samples, performed the spectroscopic measurements, analysed the data, and interpreted the data with classical Förster theory. H.P. wrote a first version of the manuscript, based on which H.P., P.R. and N.H. developed the final version of the manuscript. H.P. and N.H. reconstructed the virus structure models, and performed the virus cloning. P.F.S. and R.F. made collaborations between MIT and Italy. P.R., P.F.S., L.A., M.M., R.F. and S.L. designed the theoretical work. P.R. and S.L. developed the fluorescence theory, and P.R. and H.P. applied it to the data. P.R. and S.L. developed the quantum transport theory, and P.R. and L.A. performed the quantum mechanical simulations. A.I., B.P., L.B. and P.F. performed the TA measurements and analysed the TA data. P.F., A.I. and H.P. interpreted the TA data. M.S. and R.F. helped H.P., N.H. and A.A. perform the QY measurements, and H.P. and A.A. analysed the QY data. F.C. collaborated in developing the computation model. H.C.J. helped H.P. with the virus preparations. H.P., N.H., P.R., P.F.S., S.L. and A.M.B. made major edits on the manuscript. All the authors gave helpful comments on the manuscript.

Correspondence to Petra F. Scudo or Seth Lloyd or Angela M. Belcher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8221 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, H., Heldman, N., Rebentrost, P. et al. Enhanced energy transport in genetically engineered excitonic networks. Nature Mater 15, 211–216 (2016). https://doi.org/10.1038/nmat4448

Download citation

Further reading