Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhanced energy transport in genetically engineered excitonic networks


One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Molecular models of the genetically engineered M13 viruses.
Figure 2: Steady-state spectra and fluorescence quenching at room temperature.
Figure 3: Steady-state fluorescence data at room temperature showing exciton harvesting.
Figure 4: Transient-absorption spectra at room temperature.
Figure 5: Comparison of numerical simulations of classical and quantum transport theories for M13SF to the experiment.


  1. Wasielewski, M. R. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 1910–1921 (2009).

    CAS  Article  Google Scholar 

  2. Goodson, T. G. Optical excitations in organic dendrimers investigated by time-resolved and nonlinear optical spectroscopy. Acc. Chem. Res. 38, 99–107 (2005).

    CAS  Article  Google Scholar 

  3. Eisele, D. M. et al. Utilizing redox-chemistry to elucidate the nature of exciton transitions in supramolecular dye nanotubes. Nature Chem. 4, 655–662 (2012).

    CAS  Article  Google Scholar 

  4. Woller, J. G., Hannestad, J. K. & Albinsson, B. Self-assembled nanoscale DNA-porphyrin complex for artificial light harvesting. J. Am. Chem. Soc. 135, 2759–2768 (2013).

    CAS  Article  Google Scholar 

  5. Miller, R. A., Presley, A. D. & Francis, M. B. Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J. Am. Chem. Soc. 129, 3104–3109 (2007).

    CAS  Article  Google Scholar 

  6. Ma, Y. Z., Miller, R. A., Fleming, G. R. & Francis, M. B. Energy transfer dynamics in light-harvesting assemblies templated by the tobacco mosaic virus coat protein. J. Phys. Chem. B 112, 6887–6892 (2008).

    CAS  Article  Google Scholar 

  7. Nam, Y. S. et al. Virus-templated assembly of porphyrins into light-harvesting nanoantennae. J. Am. Chem. Soc. 132, 1462–1463 (2010).

    CAS  Article  Google Scholar 

  8. Lee, Y. J. et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009).

    CAS  Google Scholar 

  9. Dang, X. N. et al. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nature Nanotech. 6, 377–384 (2011).

    CAS  Article  Google Scholar 

  10. Nam, Y. S. et al. Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nature Nanotech. 5, 340–344 (2010).

    CAS  Article  Google Scholar 

  11. Nam, Y. S. et al. Virus-templated iridium oxide-gold hybrid nanowires for electrochromic application. Nanoscale 4, 3405–3409 (2012).

    CAS  Article  Google Scholar 

  12. Ghosh, D. et al. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nature Nanotech. 7, 677–682 (2012).

    CAS  Article  Google Scholar 

  13. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    CAS  Article  Google Scholar 

  14. Olaya-Castro, A., Lee, C. F., Fassioli Olsen, F. & Johnson, N. F. Efficiency of energy transfer in a light-harvesting system under quantum coherence. Phys. Rev. B 78, 085115 (2008).

    Article  Google Scholar 

  15. Caruso, F., Chin, A. W., Datta, A., Huelga, S. F. & Plenio, M. B. Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport. J. Chem. Phys. 131, 105106 (2009).

    Article  Google Scholar 

  16. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009).

    Article  Google Scholar 

  17. Walschaers, M., Diaz, J. F., Mulet, R. & Buchleitner, A. Optimally designed quantum transport across disordered networks. Phys. Rev. Lett. 111, 180601 (2013).

    Article  Google Scholar 

  18. Blankenship, R. E. Molecular Mechanisms of Photosynthesis (Blackwell Science, 2002).

    Book  Google Scholar 

  19. Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nature Chem. 3, 763–774 (2011).

    CAS  Article  Google Scholar 

  20. Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010).

    CAS  Article  Google Scholar 

  21. Marvin, D. A., Welsh, L. C., Symmons, M. F., Scott, W. R. P. & Straus, S. K. Molecular structure of fd (f1, M13) filamentous bacteriophage refined with respect to X-ray fibre diffraction and solid-state NMR data supports specific models of phage assembly at the bacterial membrane. J. Mol. Biol. 355, 294–309 (2006).

    CAS  Article  Google Scholar 

  22. Lankiewicz, L., Malicka, J. & Wiczk, W. Fluorescence resonance energy transfer in studies of inter-chromophoric distances in biomolecules. Acta Biochim. Pol. 44, 477–489 (1997).

    CAS  Google Scholar 

  23. Turro, N. J., Ramamurthy, V. & Scaiano, J. C. Modern Molecular Photochemistry of Organic Molecules (Univ. Science Books, 2010).

    Google Scholar 

  24. Spence, M. T. Z. & Johnson, I.D. The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies 11th edn (Live Technologies Corporation, 2010).

    Google Scholar 

  25. Haken, H. & Reineker, P. Coupled coherent and incoherent motion of excitons and its influence on line shape of optical-absorption. Z. Phys. 249, 253–268 (1972).

    CAS  Article  Google Scholar 

  26. Haken, H. & Strobl, G. Exactly solvable model for coherent and incoherent exciton motion. Z. Phys. 262, 135–148 (1973).

    CAS  Article  Google Scholar 

  27. Christensson, N., Kauffmann, H. F., Pullerits, T. & Mancal, T. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012).

    CAS  Article  Google Scholar 

  28. Tiwari, V., Peters, W. K. & Jonas, D. M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl Acad. Sci. USA 110, 1203–1208 (2013).

    CAS  Article  Google Scholar 

  29. Halpin, A. et al. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nature Chem. 6, 196–201 (2014).

    CAS  Article  Google Scholar 

  30. Huang, Y. et al. Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett. 5, 1429–1434 (2005).

    CAS  Article  Google Scholar 

  31. Lapini, A., Foggi, P., Bussotti, L., Righini, R. & Dei, A. Relaxation dynamics in three polypyridyl iron(II)-based complexes probed by nanosecond and sub-picosecond transient absorption spectroscopy. Inorg. Chim. Acta 361, 3937–3943 (2008).

    CAS  Article  Google Scholar 

  32. Marcelli, A., Foggi, P., Moroni, L., Gellini, C. & Salvi, P. R. Excited-state absorption and ultrafast relaxation dynamics of porphyrin, diprotonated porphyrin, and tetraoxaporphyrin dication. J. Phys. Chem. A 112, 1864–1872 (2008).

    CAS  Article  Google Scholar 

  33. Gentili, P. L., Bussotti, L., Ruzziconi, R., Spizzichino, S. & Foggi, P. Study of the photobehavior of a newly synthesized chiroptical molecule: (E)-(R-p, R-p)-1,2-Bis{4-methyl-[2]paracyclo[2](5,8)quinolinophan-2-yl}ethene. J. Phys. Chem. A 113, 14650–14656 (2009).

    CAS  Article  Google Scholar 

  34. May, V. & Kühn, O. Charge and Energy Transfer Dynamics in Molecular Systems 2nd edn (Wiley-VCH, John Wiley, 2004).

    Google Scholar 

  35. Forster, T. Zwischenmolekulare Energiewanderung Und Fluoreszenz. Ann. Phys. 2, 55–75 (1948).

    CAS  Article  Google Scholar 

  36. Sener, M. K. et al. Excitation migration in trimeric cyanobacterial photosystem I. J. Chem. Phys. 120, 11183–11195 (2004).

    CAS  Article  Google Scholar 

  37. Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

    Google Scholar 

Download references


This work was supported from Eni, S.p.A. (Italy) through the MIT Energy Initiative Program. H.P. thanks Kwanjeong Educational Foundation for its financial support, and G. W. Hwang for allowing us to use a fluorometer. F.C. has been supported by EU FP7 Marie-Curie Programme (Career Integration Grant) and by MIUR-FIRB grant (Project No. RBFR10M3SB).

Author information

Authors and Affiliations



H.P., N.H., P.F.S., M.M., R.F., S.L. and A.M.B. conceived the work. P.F.S., P.F., S.L. and A.M.B. supervised the overall work. H.P. and N.H. designed the experiments including protocols. H.P. prepared all the samples, performed the spectroscopic measurements, analysed the data, and interpreted the data with classical Förster theory. H.P. wrote a first version of the manuscript, based on which H.P., P.R. and N.H. developed the final version of the manuscript. H.P. and N.H. reconstructed the virus structure models, and performed the virus cloning. P.F.S. and R.F. made collaborations between MIT and Italy. P.R., P.F.S., L.A., M.M., R.F. and S.L. designed the theoretical work. P.R. and S.L. developed the fluorescence theory, and P.R. and H.P. applied it to the data. P.R. and S.L. developed the quantum transport theory, and P.R. and L.A. performed the quantum mechanical simulations. A.I., B.P., L.B. and P.F. performed the TA measurements and analysed the TA data. P.F., A.I. and H.P. interpreted the TA data. M.S. and R.F. helped H.P., N.H. and A.A. perform the QY measurements, and H.P. and A.A. analysed the QY data. F.C. collaborated in developing the computation model. H.C.J. helped H.P. with the virus preparations. H.P., N.H., P.R., P.F.S., S.L. and A.M.B. made major edits on the manuscript. All the authors gave helpful comments on the manuscript.

Corresponding authors

Correspondence to Petra F. Scudo, Seth Lloyd or Angela M. Belcher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8221 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, H., Heldman, N., Rebentrost, P. et al. Enhanced energy transport in genetically engineered excitonic networks. Nature Mater 15, 211–216 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing