Article | Published:

Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances

Nature Materials volume 14, pages 10131019 (2015) | Download Citation

Abstract

Acoustic metamaterials offer great flexibility for manipulating sound waves and promise unprecedented functionality, ranging from transformation acoustics, super-resolution imaging to acoustic cloaking. However, the design of acoustic metamaterials with exciting functionality remains challenging with traditional approaches using classic acoustic elements such as Helmholtz resonators and membranes. Here we demonstrate an ultraslow-fluid-like particle with intense artificial Mie resonances for low-frequency airborne sound. Eigenstate analysis and effective parameter retrieval show two individual negative bands in the single-size unit cell, one of which exhibits a negative bulk modulus supported by the monopolar Mie resonance, whereas the other exhibits a negative mass density induced by the dipolar Mie resonance. The unique single-negative nature is used to develop an ultra-sparse subwavelength metasurface with high reflectance for low-frequency sound. We demonstrate a 0.15λ-thick, 15%-filling ratio metasurface with an insertion loss over 93.4%. The designed Mie resonators provide diverse routes to construct novel acoustic devices with versatile applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Acoustic metamaterials. MRS Bull. 33, 931–934 (2008).

  2. 2.

    et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

  3. 3.

    , & Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics. Phys. Rev. Lett. 112, 144301 (2014).

  4. 4.

    et al. Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Phys. Rev. Lett. 110, 124301 (2013).

  5. 5.

    et al. Ultrasonic metamaterials with negative modulus. Nature Mater. 5, 452–456 (2006).

  6. 6.

    , & Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011).

  7. 7.

    , & Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102, 194301 (2009).

  8. 8.

    , , & Experimental demonstration of ordered and disordered multiresonant metamaterials for Lamb waves. Phys. Rev. Lett. 112, 234301 (2014).

  9. 9.

    , & Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett. 103, 024301 (2009).

  10. 10.

    et al. A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nature Phys. 7, 52–55 (2011).

  11. 11.

    et al. Extraordinary absorption of sound in porous lamella-crystals. Sci. Rep. 4, 4674 (2014).

  12. 12.

    , , & Tunable acoustic double negativity metamaterial. Sci. Rep. 2, 859 (2012).

  13. 13.

    , , , & Experimental demonstration of an acoustic magnifying hyperlens. Nature Mater. 8, 931–934 (2009).

  14. 14.

    et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Commun. 3, 756 (2012).

  15. 15.

    , , , & Composite acoustic medium with simultaneously negative density and modulus. Phys. Rev. Lett. 104, 054301 (2010).

  16. 16.

    et al. Amplification of acoustic evanescent waves using metamaterial slabs. Phys. Rev. Lett. 107, 194301 (2011).

  17. 17.

    & Extraordinary sound transmission through density-near-zero ultranarrow channels. Phys. Rev. Lett. 111, 055501 (2013).

  18. 18.

    , , , & Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).

  19. 19.

    et al. Platonic scattering cancellation for bending waves in a thin plate. Sci. Rep. 4, 4644 (2014).

  20. 20.

    , , & A multilayer structured acoustic cloak with homogeneous isotropic materials. Appl. Phys. Lett. 92, 151913 (2008).

  21. 21.

    , & One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Phys. Rev. B 77, 045134 (2008).

  22. 22.

    , , , & Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens. Appl. Phys. Lett. 103, 224104 (2013).

  23. 23.

    , , , & Acoustic metasurface with hybrid resonances. Nature Mater. 13, 873–878 (2014).

  24. 24.

    , , & Coupled membranes with doubly negative mass density and bulk modulus. Phys. Rev. Lett. 110, 134301 (2013).

  25. 25.

    , , , & Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008).

  26. 26.

    , , & Hybrid elastic solids. Nature Mater. 10, 620–624 (2011).

  27. 27.

    , , & Mie resonance-based dielectric metamaterials. Mater. Today 12, 60–69 (2009).

  28. 28.

    , & Light management for photovoltaics using high-index nanostructures. Nature Mater. 13, 451–460 (2014).

  29. 29.

    , , & A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities. Adv. Mater. 24, 5934–5938 (2012).

  30. 30.

    , , & Isotropic Mie resonance-based metamaterial perfect absorber. Appl. Phys. Lett. 103, 031910 (2013).

  31. 31.

    , , , & Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector. Appl. Phys. Lett. 104, 171102 (2014).

  32. 32.

    et al. Towards left-handed metamaterials using single-size dielectric resonators: The case of TiO2-disks at millimeter wavelengths. Appl. Phys. Lett. 101, 042909 (2012).

  33. 33.

    , & Resonance properties of optical all-dielectric metamaterials using two-dimensional multipole expansion. Phys. Rev. B 86, 245108 (2012).

  34. 34.

    & Mie resonance based left-handed metamaterial in the visible frequency range. Phys. Rev. B 83, 195125 (2011).

  35. 35.

    , , & Perfect dielectric-metamaterial reflector. Phys. Rev. B 88, 165116 (2013).

  36. 36.

    , , , & Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial. Phys. Rev. B 80, 195119 (2009).

  37. 37.

    et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108, 097402 (2012).

  38. 38.

    , & Enhanced and reduced transmission of acoustic waves with bubble meta-screens. Appl. Phys. Lett. 99, 221906 (2011).

  39. 39.

    et al. Design and characterization of bubble phononic crystals. Appl. Phys. Lett. 95, 171904 (2009).

  40. 40.

    & Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 108, 114301 (2012).

  41. 41.

    , , & Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 110, 175501 (2013).

  42. 42.

    et al. Space-coiling metamaterials with double negativity and conical dispersion. Sci. Rep. 3, 1614 (2013).

  43. 43.

    , , & Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Appl. Phys. Lett. 103, 201906 (2013).

  44. 44.

    & Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

  45. 45.

    , , & Homogenization of acoustic metamaterials of Helmholtz resonators in fluid. Phys. Rev. B 77, 172301 (2008).

  46. 46.

    , , & Design and measurements of a broadband two-dimensional acoustic metamaterial with anisotropic effective mass density. J. Appl. Phys. 109, 054906 (2011).

  47. 47.

    & Complex band structures and effective medium descriptions of periodic acoustic composite systems. Phys. Rev. B 80, 235118 (2009).

  48. 48.

    , , , & Magnetic and electric coupling effects of dielectric metamaterial. New J. Phys. 14, 033031 (2012).

  49. 49.

    et al. Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials. Phys. Rev. B 71, 245105 (2005).

  50. 50.

    , , , & Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 96, 041906 (2010).

  51. 51.

    , , & Low-frequency narrow-band acoustic filter with large orifice. Appl. Phys. Lett. 103, 011903 (2013).

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2012CB921504), NSFC (11274171 and 11474162), and SRFDP (20110091120040, 20120091110001 and 20130091130004).

Author information

Affiliations

  1. Key Laboratory of Modern Acoustics, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

    • Y. Cheng
    • , C. Zhou
    • , B. G. Yuan
    • , Q. Wei
    •  & X. J. Liu
  2. State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

    • Y. Cheng
    •  & X. J. Liu
  3. School of Physics and Technology, Nanjing Normal University, Nanjing 210046, China

    • D. J. Wu

Authors

  1. Search for Y. Cheng in:

  2. Search for C. Zhou in:

  3. Search for B. G. Yuan in:

  4. Search for D. J. Wu in:

  5. Search for Q. Wei in:

  6. Search for X. J. Liu in:

Contributions

X.J.L. coordinated and supervised the project. Y.C. developed the device concept and design. Y.C., C.Z. and B.G.Y. constructed the theoretical simulations and experimental set-up. D.J.W. and Q.W. provided insight and interpretation of the Mie-resonance properties. Y.C. and X.J.L. analysed the data and wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to X. J. Liu.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

Image files

  1. 1.

    Supplementary Information

    Supplementary Movie 1

  2. 2.

    Supplementary Information

    Supplementary Movie 2

  3. 3.

    Supplementary Information

    Supplementary Movie 3

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4393

Further reading