Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air

Abstract

Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g−1. To facilitate air-stable operation, we introduce a chromium oxide–chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition—from solution at low temperature—of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles—from airplanes to quadcopters and weather balloons—for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Ultrathin and light perovskite solar cells.
Figure 2: Solar cell characterization.
Figure 3: Folds as light-trapping microstructures introduced by uniaxial compression.
Figure 4: Extreme compliance of ultrathin perovskite solar foils.

References

  1. http://www.solarimpulse.com (accessed 21 May 2015)

  2. Green, M. A. Third Generation Photovoltaics (Springer, 2006).

    Google Scholar 

  3. Habas, S. E., Platt, H. A. S., Van Hest, M. F. a. M. & Ginley, D. S. Low-cost inorganic solar cells: From ink to printed device. Chem. Rev. 110, 6571–6594 (2010).

    Article  CAS  Google Scholar 

  4. Jørgensen, M. et al. Stability of polymer solar cells. Adv. Mater. 24, 580–612 (2012).

    Article  Google Scholar 

  5. Böer, K. Handbook of the Physics of Thin-Film Solar Cells (Springer, 2013).

    Book  Google Scholar 

  6. Kaltenbrunner, M. et al. Ultrathin and lightweight organic solar cells with high flexibility. Nature Commun. 3, 770 (2012).

    Article  Google Scholar 

  7. Mitzi, D. B. in Progress in Inorganic Chemistry (ed. Karlin, K.) 1–121 Vol. 48 (John Wiley, 1999).

    Google Scholar 

  8. Stranks, S. D., Nayak, P. K., Zhang, W., Stergiopoulos, T. & Snaith, H. J. Formation of thin films of organic–inorganic perovskites for high-efficiency solar cells. Angew. Chem. Int. Ed. 54, 2–11 (2015).

    Article  Google Scholar 

  9. Gao, P., Gratzel, M. & Nazeeruddin, M. K. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448–2463 (2014).

    Article  CAS  Google Scholar 

  10. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (Version 45) Martin. Prog. Photovolt. Res. Appl. 23, 1–9 (2015).

    Article  Google Scholar 

  11. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  CAS  Google Scholar 

  12. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  CAS  Google Scholar 

  13. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–320 (2013).

    Article  CAS  Google Scholar 

  14. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  CAS  Google Scholar 

  15. http://www.geaviation.com/commercial/engines (accessed 20 May 2015)

  16. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  CAS  Google Scholar 

  17. Hwang, K. et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241–1247 (2015).

    Article  CAS  Google Scholar 

  18. Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987).

    Article  CAS  Google Scholar 

  19. Wang, M. et al. Performance and stability improvement of P3HT:PCBM-based solar cells by thermally evaporated chromium oxide (CrOx) interfacial layer. ACS Appl. Mater. Interfaces 2, 2699–2702 (2010).

    Article  CAS  Google Scholar 

  20. Zhan, X. et al. Rylene and related diimides for organic electronics. Adv. Mater. 23, 268–284 (2011).

    Article  CAS  Google Scholar 

  21. Huang, C., Barlow, S. & Marder, S. R. Perylene-3,4,9,10-tetracarboxylic acid diimides: Synthesis, physical properties, and use in organic electronics. J. Org. Chem. 76, 2386–2407 (2011).

    Article  CAS  Google Scholar 

  22. Malinkiewicz, O. et al. Perovskite solar cells employing organic charge-transport layers. Nature Photon. 8, 128–132 (2013).

    Article  Google Scholar 

  23. Wei, J., Zhao, Y., Li, H., Li, G. & Pan, J. Hysteresis analysis based on ferroelectric effect in hybrid perovskite solar cells. J. Phys. Chem. Lett. 5, 3937–3945 (2014).

    Article  CAS  Google Scholar 

  24. O’Regan, B. C. et al. Opto-electronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2; separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during JV hysteresis. J. Am. Chem. Soc. 137, 5087–5099 (2015).

    Article  Google Scholar 

  25. Mei, A. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014).

    Article  CAS  Google Scholar 

  26. Ku, Z., Rong, Y., Xu, M., Liu, T. & Han, H. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 3, 3132 (2013).

    Article  Google Scholar 

  27. Christians, J. A., Miranda Herrera, P. A. & Kamat, P. V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530–1538 (2015).

    Article  CAS  Google Scholar 

  28. Leguy, A. et al. The reversible hydration of CH3NH3PbI3 in films, single crystals and solar cells. Chem. Mater. 27, 3397–3407 (2015).

    Article  CAS  Google Scholar 

  29. Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    Article  CAS  Google Scholar 

  30. Davis, A., Tran, T. & Young, D. R. Solution chemistry of iodide leaching of gold. Hydrometallurgy 32, 143–159 (1993).

    Article  CAS  Google Scholar 

  31. Williams, K. R., Gupta, K. & Wasilik, M. Etch rates for micromachining processing—Part II. J. Microelectromech. Syst. 12, 761–778 (2003).

    Article  CAS  Google Scholar 

  32. Downing, J. H., Deeley, P. D. & Fichte, R. Chromium and chromium alloys. Ullmann’s Encycl. Ind. Chem. 9, 131–155 (2012).

    Google Scholar 

  33. Cherenack, K. & VanPieterson, L. Smart textiles: Challenges and opportunities. J. Appl. Phys. 112, 091301 (2012).

    Article  Google Scholar 

  34. Hammock, M. L., Chortos, A., Tee, B. C.-K., Tok, J. B.-H. & Bao, Z. 25th anniversary article: The evolution of electronic skin (E-Skin): A brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).

    Article  CAS  Google Scholar 

  35. Bauer, S. et al. 25th anniversary article: A soft future: From robots and sensor skin to energy harvesters. Adv. Mater. 26, 149–162 (2013).

    Article  Google Scholar 

  36. Wang, Q., Gossweiler, G. R., Craig, S. L. & Zhao, X. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning. Nature Commun. 5, 4899 (2014).

    Article  Google Scholar 

  37. Keplinger, C. et al. Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013).

    Article  CAS  Google Scholar 

  38. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  Google Scholar 

  39. Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article  CAS  Google Scholar 

  40. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  CAS  Google Scholar 

  41. Sekitani, T. & Someya, T. Stretchable, large-area organic electronics. Adv. Mater. 22, 2228–2246 (2010).

    Article  CAS  Google Scholar 

  42. Wagner, S. & Bauer, S. Materials for stretchable electronics. MRS Bull. 37, 207–213 (2012).

    Article  Google Scholar 

  43. Jablonski, M., Bossuyt, F., Vanfleteren, J., Vervust, T. & De Vries, H. Reliability of a stretchable interconnect utilizing terminated, in-plane meandered copper conductor. Microelectron. Reliab. 53, 956–963 (2013).

    Article  CAS  Google Scholar 

  44. Lipomi, D. J. & Bao, Z. Stretchable, elastic materials and devices for solar energy conversion. Energy Environ. Sci. 4, 3314–3328 (2011).

    Article  CAS  Google Scholar 

  45. White, M. S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nature Photon. 7, 811–816 (2013).

    Article  CAS  Google Scholar 

  46. Kim, J. B. et al. Wrinkles and deep folds as photonic structures in photovoltaics. Nature Photon. 6, 327–332 (2012).

    Article  CAS  Google Scholar 

  47. Drack, M. et al. An imperceptible plastic electronic wrap. Adv. Mater. 27, 34–40 (2014).

    Article  Google Scholar 

  48. Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    Article  CAS  Google Scholar 

  49. Schausberger, S. E. et al. Cost-efficient open source desktop size radial stretching system with force sensor. IEEE Access 3, 556–561 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the ERC Advanced Investigators Grant ‘Soft-Map’ to S.B. and the FWF Wittgenstein Award (Solare Energie Umwandlung Z222-N19) to N.S.S. H.G. acknowledges funding through the FWF grant Nr. J3317-N27. We thank J. Duchoslav for XPS measurements. The authors are indebted to S. Schausberger, M. Krause, H. Heilbrunner and T. Stockinger for fruitful scientific discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.K. conceived and supervised the research. G.A. developed the MAPI precursor and optimized the coating recipe. G.A., E.D.G., M.K. and L.L. fabricated solar cells. G.A., D.H.A., M.D., E.D.G., H.G., M.K., M.C.S. and M.S.W. characterized devices. M.D., M.K. and R.S. designed outdoor demos. S.B., E.D.G., M.K. and M.S.W. analysed data, designed figures, and wrote the manuscript with comments from all co-authors. N.S.S. and S.B. coordinated the project.

Corresponding author

Correspondence to Martin Kaltenbrunner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 24040 kb)

Supplementary Information

Supplementary Movie 1 (MP4 20816 kb)

Supplementary Information

Supplementary Movie 2 (MP4 60973 kb)

Supplementary Information

Supplementary Movie 3 (MP4 89296 kb)

Supplementary Information

Supplementary Movie 4 (MP4 13133 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaltenbrunner, M., Adam, G., Głowacki, E. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nature Mater 14, 1032–1039 (2015). https://doi.org/10.1038/nmat4388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4388

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing