Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large-area high-quality 2D ultrathin Mo2C superconducting crystals


Transition metal carbides (TMCs) are a large family of materials with many intriguing properties and applications, and high-quality 2D TMCs are essential for investigating new physics and properties in the 2D limit. However, the 2D TMCs obtained so far are chemically functionalized, defective nanosheets having maximum lateral dimensions of 10 μm. Here we report the fabrication of large-area high-quality 2D ultrathin α-Mo2C crystals by chemical vapour deposition (CVD). The crystals are a few nanometres thick, over 100 μm in size, and very stable under ambient conditions. They show 2D characteristics of superconducting transitions that are consistent with Berezinskii–Kosterlitz–Thouless behaviour and show strong anisotropy with magnetic field orientation; moreover, the superconductivity is also strongly dependent on the crystal thickness. Our versatile CVD process allows the fabrication of other high-quality 2D TMC crystals, such as ultrathin WC and TaC crystals, which further expand the large family of 2D materials.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Large-area 2D ultrathin α-Mo2C crystals fabricated by CVD.
Figure 2: Characterization of 2D ultrathin α-Mo2C crystals.
Figure 3: 2D superconducting characteristics of ultrathin α-Mo2C crystals.
Figure 4: BKT transition of 2D ultrathin α-Mo2C crystals.
Figure 5: Thickness dependence of superconductivity of 2D ultrathin α-Mo2C crystals.


  1. 1

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  2. 2

    Geim, A. K. Graphene: Status and prospects. Science 324, 1530–1534 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Toth, V. L. E. Transition Metal Carbides and Nitrides (Academic Press, 1971).

    Google Scholar 

  4. 4

    Oyama, S. T. The Chemistry of Transition Metal Carbides and Nitrides (Springer, 1996).

    Book  Google Scholar 

  5. 5

    Matthias, B. T. & Hulm, J. K. A search for new superconducting compounds. Phys. Rev. 87, 799–806 (1952).

    CAS  Article  Google Scholar 

  6. 6

    Willerns, R. H., Buehler, E. & Matthias, B. T. Superconductivity of transition-metal carbides. Phys. Rev. 159, 327–330 (1967).

    Article  Google Scholar 

  7. 7

    Morton, N. et al. Superconductivity of molybdenum and tungsten carbides. J. Less-Common Met. 25, 97–106 (1971).

    CAS  Article  Google Scholar 

  8. 8

    Ghidiu, M., Lukatskaya, M. R., Zhao, M. Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbid “clay” with high volumetric capacitance. Nature 516, 78–81 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Naguib, M., Mochalin, V. N., Barsoum, M. W. & Gogotsi, Y. MXenes: A new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 . Adv. Mater. 23, 4248–4253 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Naguib, M. et al. Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Parthé, E. & Sadagopan, V. The structure of dimolybdenum carbide by neutron diffraction technique. Acta Crystallogr. 16, 202–205 (1963).

    Article  Google Scholar 

  14. 14

    Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Gao, L. B., Ren, W. C., Li, F. & Cheng, H. M. Total color difference for rapid and accurate identification of graphene. ACS Nano 2, 1625–1633 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Hugosson, H. W., Eriksson, O., Jansson, U. & Johansson, B. Phase stabilities and homogeneity ranges in 4d-transition-metal carbides: A theoretical study. Phys. Rev. B 63, 134108 (2001).

    Article  Google Scholar 

  17. 17

    Tinkham, M. Introduction to Superconductivity (Dover, 1996).

    Google Scholar 

  18. 18

    Kozuka, Y. et al. Two-dimensional normal-state quantum oscillations in a superconducting heterostructure. Nature 462, 487–490 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Reyren, N. et al. Anisotropy of the superconducting transport properties of the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 94, 112506 (2009).

    Article  Google Scholar 

  20. 20

    Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    CAS  Article  Google Scholar 

  21. 21

    He, Q. L. et al. Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure. Nature Commun. 5, 4247 (2014).

    CAS  Article  Google Scholar 

  22. 22

    Berezinskii, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems. Sov. Phys. JETP 34, 610–616 (1972).

    Google Scholar 

  23. 23

    Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    CAS  Article  Google Scholar 

  24. 24

    Halperin, B. I. & Nelson, D. R. Resistive transition in superconducting films. J. Low Temp. Phys. 36, 599–616 (1979).

    CAS  Article  Google Scholar 

  25. 25

    Bergmann, G. Weak localization in thin films. Phys. Rep. 107, 1–58 (1984).

    CAS  Article  Google Scholar 

  26. 26

    Morozov, S. V. et al. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 97, 016801 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Halim, J. et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Allain, A., Han, Z. & Bouchiat, V. Electrical control of the superconducting-to-insulating transition in graphene-metal hybrids. Nature Mater. 11, 590–594 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Nos. 51325205, 51290273, 51221264, 51172240 and 11374019), the Ministry of Science and Technology of China (No. 2012AA030303) and the Chinese Academy of Sciences (Nos. KGZD-EW-303-1 and KGZD-EW-T06).

Author information




W.R. conceived and supervised the project, and designed the experiments; C.X. and L.C. designed and carried out growth experiments under the supervision of W.R. and H.-M.C.; Z.L. performed TEM measurements and analyses under the supervision of X.-L.M.; L.W. and J.G. carried out transport measurements under the supervision of N.K.; W.R. and N.K. analysed data and wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Ning Kang or Wencai Ren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2259 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Wang, L., Liu, Z. et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Mater 14, 1135–1141 (2015).

Download citation

Further reading


Quick links