Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fast and long-range triplet exciton diffusion in metal–organic frameworks for photon upconversion at ultralow excitation power

A Retraction to this article was published on 20 December 2016

This article has been updated

Abstract

The conversion of low-energy light into photons of higher energy based on sensitized triplet–triplet annihilation upconversion (TTA-UC) has emerged as a promising wavelength-shifting methodology because it permits UC at excitation powers as low as the solar irradiance. However, its application has been significantly hampered by the slow diffusion of excited molecules in solid matrices. Here, we introduce metal–organic frameworks (MOFs) that promote TTA-UC by taking advantage of triplet exciton migration among fluorophores that are regularly aligned with spatially controlled chromophore orientations. We synthesized anthracene-containing MOFs with different molecular orientations, and the analysis of TTA-UC emission kinetics unveiled a high triplet diffusion rate with a micrometre-scale diffusion length. Surface modification of MOF nanocrystals with donor molecules and their encapsulation in glassy poly(methyl methacrylate) (PMMA) allowed the construction of molecular-diffusion-free solid-state upconverters, which lead to an unprecedented maximization of overall UC quantum yield at excitation powers comparable to or well below the solar irradiance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic representation of TTA-UC by triplet exciton diffusion in MOFs.
Figure 2: Systematic tuning of acceptor arrangements in MOFs.
Figure 3: Observation of photon upconversion in MOFs.
Figure 4: Molecular-diffusion-free solid-state TTA-UC with maximized UC efficiency from very low excitation power.

Similar content being viewed by others

Change history

  • 24 November 2016

    We wish to retract this Article due to concerns with some data related to upconversion in the solid-state samples presented in Fig. 4d,e, and to the reproducibility check of the triplet diffusion constant provided in the Supplementary Information. In this Article, we reported fast triplet energy migration and efficient photon upconversion at low excitation intensity in metal–organic frameworks (MOFs). We have since been able to observe the upconverted emission from MOFs both in benzene dispersions and in polymeric films; hence, the concept of photon upconversion in MOFs based on triplet energy migration remains valid. However, we are now unable to observe solid-state upconversion emission at the low excitation intensity reported in Fig. 4d,e, and to quantitatively reproduce the triplet diffusion constants in MOFs reported in Supplementary Figs 8–13 and Supplementary Tables 1–3. Since these are key parameters of this paper, all authors wish to retract this Article. We deeply regret these circumstances and sincerely apologize to the scientific community for the inconvenience this publication has caused to others.

References

  1. Köhler, A. & Bässler, H. What controls triplet exciton transfer in organic semiconductors? J. Mater. Chem. 21, 4003–4011 (2011).

    Article  Google Scholar 

  2. Trupke, T., Green, M. A. & Würfel, P. Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92, 4117–4122 (2002).

    Article  CAS  Google Scholar 

  3. Baluschev, S. et al. Up-conversion fluorescence: Noncoherent excitation by sunlight. Phys. Rev. Lett. 97, 143903 (2006).

    Article  CAS  Google Scholar 

  4. Singh-Rachford, T. N. & Castellano, F. N. Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010).

    Article  CAS  Google Scholar 

  5. Cheng, Y. Y. et al. On the efficiency limit of triplet–triplet annihilation for photochemical upconversion. Phys. Chem. Chem. Phys. 12, 66–71 (2010).

    Article  CAS  Google Scholar 

  6. Zhao, J. Z., Ji, S. M. & Guo, H. M. Triplet–triplet annihilation based upconversion: From triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Adv. 1, 937–950 (2011).

    Article  CAS  Google Scholar 

  7. Monguzzi, A., Tubino, R., Hoseinkhani, S., Campione, M. & Meinardi, F. Low power, non-coherent sensitized photon up-conversion: Modelling and perspectives. Phys. Chem. Chem. Phys. 14, 4322–4332 (2012).

    Article  CAS  Google Scholar 

  8. Simon, Y. C. & Weder, C. Low-power photon upconversion through triplet–triplet annihilation in polymers. J. Mater. Chem. 22, 20817–20830 (2012).

    Article  CAS  Google Scholar 

  9. Kim, J. H. & Kim, J. H. Encapsulated triplet–triplet annihilation-based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis. J. Am. Chem. Soc. 134, 17478–17481 (2012).

    Article  CAS  Google Scholar 

  10. Liu, Q. et al. A General strategy for biocompatible, high-effective upconversion nanocapsules based on triplet–triplet annihilation. J. Am. Chem. Soc. 135, 5029–5037 (2013).

    Article  CAS  Google Scholar 

  11. Duan, P. F., Yanai, N. & Kimizuka, N. Photon upconverting liquids: Matrix-free molecular upconversion systems functioning in air. J. Am. Chem. Soc. 135, 19056–19059 (2013).

    Article  CAS  Google Scholar 

  12. Gray, V., Dzebo, D., Abrahamsson, M., Albinsson, B. & Moth-Poulsen, K. Triplet–triplet annihilation photon-upconversion: Towards solar energy applications. Phys. Chem. Chem. Phys. 16, 10345–10352 (2014).

    Article  CAS  Google Scholar 

  13. Duan, P. F., Yanai, N., Nagatomi, H. & Kimizuka, N. Photon upconversion in supramolecular gel matrixes: Spontaneous accumulation of light-harvesting donor–acceptor arrays in nanofibers and acquired air stability. J. Am. Chem. Soc. 137, 1887–1894 (2015).

    Article  CAS  Google Scholar 

  14. Inokuti, M. & Hirayama, F. Influence of energy transfer by exchange mechanism on donor luminescence. J. Chem. Phys. 43, 1978–1989 (1965).

    Article  CAS  Google Scholar 

  15. Scholes, G. D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003).

    Article  CAS  Google Scholar 

  16. Islangulov, R. R., Lott, J., Weder, C. & Castellano, F. N. Noncoherent low-power upconversion in solid polymer films. J. Am. Chem. Soc. 129, 12652–12653 (2007).

    Article  CAS  Google Scholar 

  17. Kim, J. H., Deng, F., Castellano, F. N. & Kim, J. H. High efficiency low-power upconverting soft materials. Chem. Mater. 24, 2250–2252 (2012).

    Article  CAS  Google Scholar 

  18. Jiang, Z., Xu, M., Li, F. Y. & Yu, Y. L. Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet–triplet annihilation. J. Am. Chem. Soc. 135, 16446–16453 (2013).

    Article  CAS  Google Scholar 

  19. Monguzzi, A. et al. High efficiency up-converting single phase elastomers for photon managing applications. Adv. Energy Mater. 3, 680–686 (2013).

    Article  CAS  Google Scholar 

  20. Baluschev, S. et al. Two pathways for photon upconversion in model organic compound systems. J. Appl. Phys. 101, 023101 (2007).

    Article  Google Scholar 

  21. Zhang, C., Zheng, J. Y., Zhao, Y. S. & Yao, J. N. Organic core-shell nanostructures: Microemulsion synthesis and upconverted emission. Chem. Commun. 46, 4959–4961 (2010).

    Article  CAS  Google Scholar 

  22. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  23. Kitagawa, S., Kitaura, R. & Noro, S.-i. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  24. Férey, G. & Serre, C. Large breathing effects in three-dimensional porous hybrid matter: Facts, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009).

    Article  Google Scholar 

  25. Li, J. R., Sculley, J. & Zhou, H.-C. Metal-organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    Article  CAS  Google Scholar 

  26. Zhang, T. & Lin, W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014).

    Article  CAS  Google Scholar 

  27. Deria, P. et al. Beyond post-synthesis modification: Evolution of metal-organic frameworks via building block replacement. Chem. Soc. Rev. 43, 5896–5912 (2014).

    Article  CAS  Google Scholar 

  28. Hauptvogel, I. M. et al. Flexible and hydrophobic Zn-based metal-organic framework. Inorg. Chem. 50, 8367–8374 (2011).

    Article  CAS  Google Scholar 

  29. Zhang, G. H. & Thomas, J. K. Transport of singlet excitation in solid aromatic polymers. J. Phys. Chem. 99, 11203–11215 (1995).

    Article  CAS  Google Scholar 

  30. Kent, C. A. et al. Energy transfer dynamics in metal-organic frameworks. J. Am. Chem. Soc. 132, 12767–12769 (2010).

    Article  CAS  Google Scholar 

  31. Kent, C. A. et al. Light Harvesting in microscale metal-organic frameworks by energy migration and interfacial electron transfer quenching. J. Am. Chem. Soc. 133, 12940–12943 (2011).

    Article  CAS  Google Scholar 

  32. Kent, C. A., Liu, D., Meyer, T. J. & Lin, W. Amplified luminescence quenching of phosphorescent metal-organic frameworks. J. Am. Chem. Soc. 134, 3991–3994 (2012).

    Article  CAS  Google Scholar 

  33. Lin, J. X. et al. Triplet excitation energy dynamics in metal-organic frameworks. J. Phys. Chem. C 117, 22250–22259 (2013).

    Article  CAS  Google Scholar 

  34. Son, H. J. et al. Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. J. Am. Chem. Soc. 135, 862–869 (2013).

    Article  CAS  Google Scholar 

  35. Monguzzi, A., Mezyk, J., Scotognella, F., Tubino, R. & Meinardi, F. Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold. Phys. Rev. B 78, 195112 (2008).

    Article  Google Scholar 

  36. Haefele, A., Blumhoff, J., Khnayzer, R. S. & Castellano, F. N. Getting to the (square) root of the problem: How to make noncoherent pumped upconversion linear. J. Phys. Chem. Lett. 3, 299–303 (2012).

    Article  CAS  Google Scholar 

  37. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals (Clarendon Press, 1982).

    Google Scholar 

  38. Jortner, J., Choi, S. I., Katz, J. L. & Rice, S. A. Triplet energy transfer and triplet–triplet interaction in aromatic crystals. Phys. Rev. Lett. 11, 323–326 (1963).

    Article  CAS  Google Scholar 

  39. Monguzzi, A., Tubino, R. & Meinardi, F. Upconversion-induced delayed fluorescence in multicomponent organic systems: Role of Dexter energy transfer. Phys. Rev. B 77, 155122 (2008).

    Article  Google Scholar 

  40. Quarti, C., Fazzi, D. & Zoppo, M. D. A computational investigation on singlet and triplet exciton couplings in acene molecular crystals. Phys. Chem. Chem. Phys. 13, 18615–18625 (2011).

    Article  CAS  Google Scholar 

  41. Ern, V. Anisotropy of triplet exciton diffusion in anthracene. Phys. Rev. Lett. 22, 343–345 (1969).

    Article  CAS  Google Scholar 

  42. Grisanti, L. et al. Roles of local and nonlocal electron–phonon couplings in triplet exciton diffusion in the anthracene crystal. Phys. Rev. B 88, 035450 (2013).

    Article  Google Scholar 

  43. Lin, J. D. A. et al. Systematic study of exciton diffusion length in organic semiconductors by six experimental methods. Mater. Horiz. 1, 280–285 (2014).

    Article  CAS  Google Scholar 

  44. Wei, Z. et al. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement. J. Am. Chem. Soc. 136, 8269–8276 (2014).

    Article  CAS  Google Scholar 

  45. Kondo, M., Furukawa, S., Hirai, K. & Kitagawa, S. Coordinatively immobilized monolayers on porous coordination polymer crystals. Angew. Chem. Int. Ed. 49, 5327–5330 (2010).

    Article  CAS  Google Scholar 

  46. Yanai, N. & Granick, S. Directional self-assembly of a colloidal metal-organic framework. Angew. Chem. Int. Ed. 51, 5638–5641 (2012).

    Article  CAS  Google Scholar 

  47. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 123044 (2013).

    Article  Google Scholar 

  48. Sindoro, M., Yanai, N., Jee, A. Y. & Granick, S. Colloidal-sized metal-organic frameworks: Synthesis and applications. Acc. Chem. Res. 47, 459–469 (2014).

    Article  CAS  Google Scholar 

  49. Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 43, 5700–5734 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a Grants-in-Aid for Scientific Research (S) (25220805), a Grants-in-Aid for Young Scientists (B) (26810036), a Grant-in-Aid for Scientific Research on Innovative Area (26104529) from the Ministry of Education, Culture Sports, Science and Technology of Japan, the JSPS-NSF International Collaborations in Chemistry (ICC) program, and a research grant from The Noguchi Institute. P.M. and A.M. acknowledge JSPS postdoctoral fellowships for foreign researchers. The authors acknowledge M.-a. Morikawa and R. Yoshida in Kyushu University for their help in TEM measurements.

Author information

Authors and Affiliations

Authors

Contributions

N.Y. and N.K. conceived and designed the project; P.M., A.M. and N.Y. performed the experiments and analysed the data; T.Y. assisted in the crystallographic study; P.M., A.M., N.Y. and N.K. co-wrote the paper.

Corresponding authors

Correspondence to Nobuhiro Yanai or Nobuo Kimizuka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2012 kb)

Supplementary Information

Supplementary Information (CIF 54 kb)

Supplementary Information

Supplementary Information (CIF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahato, P., Monguzzi, A., Yanai, N. et al. Fast and long-range triplet exciton diffusion in metal–organic frameworks for photon upconversion at ultralow excitation power. Nature Mater 14, 924–930 (2015). https://doi.org/10.1038/nmat4366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing