Letter | Published:

Time-domain separation of optical properties from structural transitions in resonantly bonded materials

Nature Materials volume 14, pages 991995 (2015) | Download Citation

Abstract

The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage1 and future applications include universal memories2, flexible displays3, reconfigurable optical circuits4,5, and logic devices6. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

  2. 2.

    Phase-change materials: Towards a universal memory? Nature Mater. 4, 265–266 (2005).

  3. 3.

    , & An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014).

  4. 4.

    et al. Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials. Appl. Phys. Lett. 103, 141119 (2013).

  5. 5.

    , , , & On-chip photonic memory elements employing phase-change materials. Adv. Mater. 26, 1372–1377 (2014).

  6. 6.

    et al. Ultrafast phase-change logic device driven by melting processes. Proc. Natl Acad. Sci. USA 111, 13272–13277 (2014).

  7. 7.

    et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569 (2012).

  8. 8.

    et al. Liquid Ge2Sb2Te5 studied by extended X-ray absorption. Appl. Phys. Lett. 95, 241902 (2009).

  9. 9.

    et al. Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states. Appl. Phys. Lett. 89, 201910 (2006).

  10. 10.

    et al. Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, 703–708 (2004).

  11. 11.

    , , & Building blocks of amorphous Ge2Sb2Te5. Phys. Rev. B 76, 054101 (2007).

  12. 12.

    et al. Resonant bonding in crystalline phase-change materials. Nature Mater. 7, 653–658 (2008).

  13. 13.

    & Bonding origin of optical contrast in phase-change memory materials. Phys. Rev. B 81, 081204 (2010).

  14. 14.

    & Effects of resonance bonding on the properties of crystalline and amorphous semiconductors. Phys. Rev. B 8, 660–667 (1973).

  15. 15.

    , & First principles study of the optical contrast in phase change materials. J. Phys. Condens. Matter 22, 315801 (2010).

  16. 16.

    , , , & Distortion-triggered loss of long-range order in solids with bonding energy hierarchy. Nature Chem. 3, 311–316 (2011).

  17. 17.

    , & Compact femtosecond electron diffractometer with 100 keV electron bunches approaching the single-electron pulse duration limit. J. Appl. Phys. 117, 044903 (2015).

  18. 18.

    , , & GaAs under intense ultrafast excitation: Response of the dielectric function. Phys. Rev. Lett. 80, 185–188 (1998).

  19. 19.

    et al. Theory for displacive excitation of coherent phonons. Phys. Rev. B 45, 768–778 (1992).

  20. 20.

    , , , & First principles study of crystalline and amorphous Ge2Sb2Te5 and the effects of stoichiometric defects. J. Phys. Condens. Matter 21, 255501 (2010).

  21. 21.

    , , & Frequency-domain ‘single-shot’ ultrafast transient absorption spectroscopy using chirped laser pulses. J. Appl. Phys. 96, 25–33 (2004).

  22. 22.

    et al. Electronic acceleration of atomic motions and disordering in bismuth. Nature 458, 56–59 (2009).

  23. 23.

    et al. Detection of nonthermal melting by ultrafast X-ray diffraction. Science 286, 1340–1342 (1999).

  24. 24.

    et al. Atomic-scale visualization of inertial dynamics. Science 308, 392–395 (2005).

  25. 25.

    et al. Electronically driven structure changes of Si captured by femtosecond electron diffraction. Phys. Rev. Lett. 100, 155504 (2008).

  26. 26.

    , , , & Ultrafast crystalline-to-amorphous phase transition in Ge2Sb2Te5 chalcogenide alloy thin film using single-shot imaging spectroscopy. Appl. Phys. Lett. 104, 261903 (2014).

  27. 27.

    et al. Ultrafast laser-induced phase transitions in amorphous GeSb films. Phys. Rev. Lett. 86, 3650–3653 (2001).

  28. 28.

    et al. Ultrafast adiabatic manipulation of slow light in a photonic crystal. Phys. Rev. A 81, 043837 (2010).

  29. 29.

    et al. Ultrafast broadband tuning of resonant optical nanostructures using phase change materials. Preprint at (2015)

  30. 30.

    et al. Temperature dependence of the thermal properties of optical memory materials. Jpn. J. Appl. Phys. 46, 3909–3911 (2007).

Download references

Acknowledgements

L.W. acknowledges support by the Leibniz graduate school ‘Dynamics in New Light’. T.A.M. acknowledges financial support through the Marie Curie COFUND project and Spanish Ministry of Economy and Competitiveness (MINECO). R.B. thanks the Alexander von Humboldt Foundation for financial support. V.P. acknowledges financial support from MINECO and the ‘Fondo Europeo de Desarrollo Regional’ (FEDER) through grant TEC2013-46168-R. R.E. acknowledges fruitful discussions with M. Wuttig and funding from the Max Planck Society. S.W. acknowledges financial support from Ramon y Cajal program RYC-2013-14838 and Marie Curie Career Integration Grant PCIG12-GA-2013-618487. V.P. and S.W. acknowledge support from Fundació Cellex.

Author information

Author notes

    • Lutz Waldecker
    •  & Timothy A. Miller

    These authors contributed equally to this work.

Affiliations

  1. Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany

    • Lutz Waldecker
    • , Roman Bertoni
    •  & Ralph Ernstorfer
  2. ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860, Castelldefels, Barcelona, Spain

    • Timothy A. Miller
    • , Miquel Rudé
    • , Johann Osmond
    • , Valerio Pruneri
    •  & Simon Wall
  3. ICREA-Institució Catalana de Recerca i Estudi Avançats, 08015 Barcelona, Spain

    • Valerio Pruneri
  4. SUTD- Singapore University of Technology & Design, 8 Somapah Road 487372 Singapore, Singapore

    • Robert E. Simpson

Authors

  1. Search for Lutz Waldecker in:

  2. Search for Timothy A. Miller in:

  3. Search for Miquel Rudé in:

  4. Search for Roman Bertoni in:

  5. Search for Johann Osmond in:

  6. Search for Valerio Pruneri in:

  7. Search for Robert E. Simpson in:

  8. Search for Ralph Ernstorfer in:

  9. Search for Simon Wall in:

Contributions

S.W., L.W. and R.E. initiated the project. T.A.M. and S.W. performed the multi-shot optical measurements. S.W., L.W. and T.A.M. performed the single-shot optical measurements. L.W. and R.B. performed the time-resolved diffraction measurements. M.R. fabricated samples, which were characterized by M.R., T.A.M. and J.O. All authors provided input to the interpretation of the data and writing the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Ralph Ernstorfer or Simon Wall.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4359