Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club


The structure of the stomatopod dactyl club—an ultrafast, hammer-like device used by the animal to shatter hard seashells—offers inspiration for impact-tolerant ceramics. Here, we present the micromechanical principles and related micromechanisms of deformation that impart the club with high impact tolerance. By using depth-sensing nanoindentation with spherical and sharp contact tips in combination with post-indentation residual stress mapping by Raman microspectroscopy, we show that the impact surface region of the dactyl club exhibits a quasi-plastic contact response associated with the interfacial sliding and rotation of fluorapatite nanorods, endowing the club with localized yielding. We also show that the subsurface layers exhibit strain hardening by microchannel densification, which provides additional dissipation of impact energy. Our findings suggest that the club’s macroscopic size is below the critical size above which Hertzian brittle cracks are nucleated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Fractured shell impacted by a stomatopod dactyl club, and overview of dactyl clubs visualized by macro-photography and microCT scan.
Figure 2: Indentation response of the smasher dactyl club in distinct layers.
Figure 3: Contact deformation and damage mechanisms of the dactyl clubs revealed by post-indentation FESEM observations of the planes beneath the contact points.
Figure 4: Multi-scale indentation fracture studies of the dactyl clubs.
Figure 5: Sharp contact indentation and residual stress fields in the dactyl clubs, and comparison with geologic FAP.


  1. 1

    Chen, P. Y., McKittrick, J. & Meyers, M. A. Biological materials: Functional adaptations and bioinspired designs. Prog. Mater. Sci. 57, 1492–1704 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Amini, S. & Miserez, A. Wear and abrasion resistance selection maps of biological materials. Acta Biomater. 9, 7895–7907 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Barthelat, F. & Espinosa, H. D. An experimental investigation of deformation and fracture of nacre-mother of pearl. Exp. Mech. 47, 311–324 (2007).

    Article  Google Scholar 

  4. 4

    Kamat, S., Su, X., Ballarini, R. & Heuer, A. H. Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405, 1036–1040 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Li, L. & Ortiz, C. Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour. Nature Mater. 13, 501–507 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Bruet, B. J. B., Song, J., Boyce, M. C. & Ortiz, C. Materials design principles of ancient fish armour. Nature Mater. 748–756 (2008).

  7. 7

    Yao, H. et al. Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod. Proc. Natl Acad. Sci. USA 107, 987–992 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Munch, E. et al. Tough, bio-inspired hybrid materials. Science 322, 1516–1520 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Studart, A. Towards high-performance bioinspired composites. Adv. Mater. 24, 5024–5044 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Thoen, H. H., How, M. J., Chiou, T-H. & Marshall, J. A different form of color vision in Mantis shrimp. Science 343, 411–413 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Weaver, J. C. et al. The stomatopod dactyl club: A formidable damage-tolerant biological hammer. Science 336, 1275–1280 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Amini, S. et al. Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages. Nature Commun. 5, 3187 (2014).

    Article  Google Scholar 

  13. 13

    He, L. H., Fujisawa, N. & Swain, M. V. Elastic modulus and stress–strain response of human enamel by nanoindentation. Biomaterials 27, 4388–4398 (2006).

    CAS  Article  Google Scholar 

  14. 14

    He, L. H. & Swain, M. V. Nanoindentation derived stress–strain properties of dental materials. Den. Mater. 23, 814–821 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Sachs, C., Fabritius, H. & Raabe, D. Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. J. Struct. Biol. 161, 120–132 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Lawn, B. Indentation of ceramics with spheres: A century after hertz. J. Am. Ceram. Soc. 81, 1977–1994 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Morris, D. J. & Cook, R. F. In situ cube-corner indentation of soda-lime glass and fused silica. J. Am. Ceram. Soc. 87, 1494–1501 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Miserez, A. et al. Effects of laminate architecture on fracture resistance of sponge biosilica: Lessons from Nature. Adv. Funct. Mater. 18, 1–8 (2008).

    Google Scholar 

  19. 19

    Schuh, C. A. Nanoindentation studies of materials. Mater. Today 9, 32–40 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Launey, M. E., Chen, P-Y. & Ritchie, R. O. Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomater. 6, 1505–1514 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Wang, R. & Gupta, H. S. Deformation and fracture mechanisms of bone and nacre. Annu. Rev. Mater. Res. 2011, 41–73 (2011).

    Article  Google Scholar 

  22. 22

    Lawn, B. Fracture of Brittle Solids 2nd edn (Cambridge Univ. Press, 1993).

    Book  Google Scholar 

  23. 23

    Wang, X., Padture, N. P. & Tanaka, H. Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nature Mater. 3, 539–544 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Zok, F. & Miserez, A. Property maps for abrasion resistance of materials. Acta Mater. 55, 6365–6371 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Rhee, Y-W., Kim, H-W., Deng, Y. & Lawn, B. R. Brittle fracture versus quasi plasticity in ceramics: A simple predictive index. J. Am. Ceram. Soc. 84, 561–565 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Deng, Y., Lawn, B. R. & Lloyd, I. K. Characterization of damage modes in dental ceramic bilayer structures. J. Biomed. Mater. Res. 63, 137–145 (2002).

    CAS  Article  Google Scholar 

  27. 27

    Guiberteau, F., Padture, N. P. & Lawn, B. R. Effect of grain size on Hertzian contact damage in alumina. J. Am. Ceram. Soc. 77, 1825–1831 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Barthelat, F., Tang, H., Zavattieri, P. D., Li, C-M. & Espinosa, H. D. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306–337 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Li, X., Xu, Z-H. & Wang, R. In situ observation of nanograin rotation and deformation in nacre. Nano Lett. 6, 2301–2304 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Meyers, M. A. Dynamic Behavior of Materials 323–381 (John Wiley, 1994).

    Book  Google Scholar 

Download references


This research is financially supported by the Singapore National Research Foundation (NRF) through a NRF Fellowship awarded to A.M. S.A. and M.T. are supported by a Singapore International Graduate Award (SINGA fellowship). We thank T. Baikie for providing the geologic FAP sample, A. Krishna for assistance with sample preparation, A. Serjouei and M. Qwamizadeh for advice on DFEA simulations, and A. Cohen for providing access to the microCT equipment.

Author information




S.A. conducted all experiments and DFEA simulations, and performed all data analysis. M.T. helped conduct nanoindentation experiments, DFEA simulations, and Raman spectroscopy data analysis. S.I. advised on Hertzian indentation experiments, supervised DFEA simulations, and provided editorial comments. A.M. designed and supervised the study. A.M. and S.A. wrote the paper with input from all authors.

Corresponding author

Correspondence to Ali Miserez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2899 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amini, S., Tadayon, M., Idapalapati, S. et al. The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. Nature Mater 14, 943–950 (2015).

Download citation

Further reading


Quick links