Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Tuning order in disorder

Recent research has revealed considerable diversity in the short-range ordering of metallic glass, identifying favoured and unfavoured local atomic configurations coexisting in an inhomogeneous amorphous structure. Tailoring the population of these local motifs may selectively enhance a desired property.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Local structural variation in an MG versus a crystalline metal.
Figure 2: Coordination polyhedra distribution in a metallic glass.
Figure 3: Atomic contributions to soft vibrational modes in simulated Cu64Zr36 MG.
Figure 4: Contour maps showing the heterogeneous spatial distribution of Cu and Zr atoms that participate the most in soft modes, correlated with those that contribute the most to deformation strain.

References

  1. Hirata, A. et al. Nature Mater. 10, 28–33 (2011).

    CAS  Google Scholar 

  2. Ma, E. & Zhang, Z. Nature Mater. 10, 10–11 (2011).

    CAS  Google Scholar 

  3. Greer, A. L. in Physical Metallurgy (eds Laughlin, D. E. & Hono, K.) 5th edn 305–385 (Elsevier, 2014).

    Google Scholar 

  4. Wagner, H. et al. Nature Mater. 10, 439–442 (2011).

    CAS  Google Scholar 

  5. Liu, Y. H. et al. Phys. Rev. Lett. 106, 125504 (2011).

    CAS  Google Scholar 

  6. Finney, J. L. Proc. R. Soc. Lond. A 319, 479 (1970).

    CAS  Google Scholar 

  7. Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Nature 439, 419–425 (2006).

    CAS  Google Scholar 

  8. Bernal, J. D. Nature 185, 68–70 (1960).

    Google Scholar 

  9. Torquato, S., Truskett, T. M. & Debenedetti, P. G. Phys. Rev. Lett. 84, 2064–2067 (2000).

    CAS  Google Scholar 

  10. Cheng, Y. Q. & Ma, E. Prog. Mater. Sci. 56, 379–473 (2011).

    CAS  Google Scholar 

  11. Zheng, K. et al. Nature Commun. 1, 24 (2010).

    Google Scholar 

  12. Hirata, A. et al. Science 26, 376–379 (2013).

    Google Scholar 

  13. Cheng, Y. Q., Ding, J. & Ma, E. Mater. Res. Lett. 1, 3–12 (2013).

    CAS  Google Scholar 

  14. Miracle, D. B. & Sanders, W. S. Philos. Mag. 83, 2409–2428 (2003).

    CAS  Google Scholar 

  15. Miracle, D. B. Nature Mater. 3, 697–702 (2004).

    Article  CAS  Google Scholar 

  16. Miracle, D. B. Acta Mater. 54, 4317–4336 (2006).

    CAS  Google Scholar 

  17. Nelson, D. R. & Spaepen, F. in Solid State Physics-Advances in Research and Applications (eds Ehrenreich, H. & Turnbull, D.) Vol. 42, 1–90 (Academic, 1989).

    Google Scholar 

  18. Nelson, D. R. Phys. Rev. B 28, 5515–5535 (1983).

    CAS  Google Scholar 

  19. Kramb, R. C., Ward, L. T., Jensen, K. E., Vaia, R. A. & Miracle, D. B. Acta Mater. 61, 2025–2032 (2014).

    Google Scholar 

  20. Ding, J., Cheng, Y. & Ma, E. Acta Mater. 69, 343–354 (2014).

    CAS  Google Scholar 

  21. Guthrie, M. et al. Phys. Rev. Lett. 93, 115502 (2004).

    CAS  Google Scholar 

  22. Wu, S. Q., Wang, C. Z., Hao, S. G., Zhu, Z. Z. & Ho, K. M. Appl. Phys. Lett. 97, 021901 (2010).

    Google Scholar 

  23. Ding, J., Cheng, Y. Q., Sheng, H. & Ma, E. Phys. Rev. B 85, 060201 (2012).

    Google Scholar 

  24. Ding, J., Cheng, Y. Q. & Ma, E. Acta Mater. 61, 3130–3140 (2013).

    CAS  Google Scholar 

  25. Kelton, K. F. et al. Phys. Rev. Lett. 90, 195504 (2003).

    CAS  Google Scholar 

  26. Shen, Y. T. et al. Phys. Rev. Lett. 102, 057801 (2009).

    CAS  Google Scholar 

  27. Cheng, Y. Q., Sheng, H. W. & Ma, E. Phys. Rev. B 78, 014207 (2008).

    Google Scholar 

  28. Mauro, N. A., Blodgett, M., Johnson, M. L., Vogt, A. J. & Kelton, K. F. Nature Commun. 5, 4616 (2014).

    CAS  Google Scholar 

  29. Royall, C. P. & Williams, S. R. Phys. Rep. 560, 1–75 (2015).

    CAS  Google Scholar 

  30. Ding, J., Patinet, S., Falk, M. L., Cheng, Y. & Ma, E. Proc. Natl Acad. Sci. USA 111, 14052–14056 (2014).

    CAS  Google Scholar 

  31. Cheng, Y. Q., Cao, A. J., Sheng, H. W. & Ma, E. Acta Mater. 56, 5263–5275 (2008).

    CAS  Google Scholar 

  32. Zhang, Y. et al. Phys. Rev. B 90, 174101 (2014).

    Google Scholar 

  33. Dmowski, W., Iwashita, T., Chuang, C. P., Almer, J. & Egami, T. Phys. Rev. Lett. 105, 205502 (2010).

    CAS  Google Scholar 

  34. Spaepen, F. Acta Metallurgica 25, 407–415 (1977).

    CAS  Google Scholar 

  35. Egami, T. JOM 62, 70–75 (2010).

    Google Scholar 

  36. Xu, J. & Ma, E. J. Mater. Res. 29, 1489–1499 (2014).

    CAS  Google Scholar 

  37. Gleiter, H. Beilstein J. Nanotechnol. 4, 517–533 (2013).

    Google Scholar 

  38. Greer, A. L., Cheng, Y. Q. & Ma, E. Mater. Sci. Eng. Rep. 74, 71–132 (2013).

    Google Scholar 

  39. Yi, J., Wang, W. H. & Lewandowski, J. J. Acta Mater. 87, 1–7 (2015).

    CAS  Google Scholar 

  40. Magagnosc, D. J. et al. Sci. Rep. 3, 1096 (2013).

    Google Scholar 

  41. Lee, S. C., Lee, C. M., Yang, J. W. & Lee, J. C. Scripta Mater. 58, 591–594 (2008).

    CAS  Google Scholar 

  42. Falk, M. L. & Langer, J. S. Phys. Rev. E 57, 7192–7205 (1998).

    CAS  Google Scholar 

  43. Wang, C. et al. Proc. Natl Acad. Sci. USA 110, 19725–19730 (2013).

    CAS  Google Scholar 

  44. Lacks, D. J. & Osborne, M. J. Phys. Rev. Lett. 93, 255501 (2004).

    Google Scholar 

  45. Sheng, H. W. et al. Nature Mater. 6, 192–197 (2007).

    CAS  Google Scholar 

  46. Kim, J. J. et al. Science 295, 654–657 (2002).

    CAS  Google Scholar 

  47. Zhang, F. et al. Appl. Phys. Lett. 104, 061905 (2014).

    Google Scholar 

  48. Fan, Y., Iwashita, T. & Egami, T. Nature Commun. 5, 5083 (2014).

    CAS  Google Scholar 

  49. Haxton, T. K. & Liu, A. J. Phys. Rev. Lett. 99, 195701 (2007).

    Google Scholar 

  50. Zaluska, A. & Matyja, H. Mater. Sci. Eng. 89, L11–L13 (1987).

    CAS  Google Scholar 

  51. Cheng, Y. Q., Cao, A. J. & Ma, E. Acta Mater. 57, 3253–3267 (2009).

    CAS  Google Scholar 

  52. Cheng, Y. Q. & Ma, E. Phys. Rev. B 80, 064104 (2009).

    Google Scholar 

  53. Weaire, D., Ashby, M. F., Logan, J. & Weins, M. J. Acta Metallurgica 19, 779–788 (1971).

    CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges contributions from J. Ding, Y. Q. Cheng, H. W. Sheng and M. L. Falk, and support from the US Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract no. DE-FG02-09ER46056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, E. Tuning order in disorder. Nature Mater 14, 547–552 (2015). https://doi.org/10.1038/nmat4300

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing