Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks

Abstract

Injectable hydrogels can provide a scaffold for in situ tissue regrowth and regeneration, yet gel degradation before tissue reformation limits the gels’ ability to provide physical support. Here, we show that this shortcoming can be circumvented through an injectable, interconnected microporous gel scaffold assembled from annealed microgel building blocks whose chemical and physical properties can be tailored by microfluidic fabrication. In vitro, cells incorporated during scaffold formation proliferated and formed extensive three-dimensional networks within 48 h. In vivo, the scaffolds facilitated cell migration that resulted in rapid cutaneous-tissue regeneration and tissue-structure formation within five days. The combination of microporosity and injectability of these annealed gel scaffolds should enable novel routes to tissue regeneration and formation in vivo.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Microfluidic generation of microsphere hydrogel building blocks for the creation of microporous annealed particle (MAP) scaffolds.
Figure 2: High-precision fabrication of microgel building blocks allows the creation of defined MAP scaffolds.
Figure 3: MAP scaffolds facilitate 3D cellular network formation and proliferation in vitro.
Figure 4: MAP scaffolds promote fast wound closure in SKH1-Hrhr and Balb/c epidermal mouse models.
Figure 5: MAP scaffolds allow faster tissue regeneration compared with non-porous controls in vivo.
Figure 6: MAP scaffolds elicit a significantly lower immune response than non-porous hydrogels in vivo.

References

  1. Lee, K. & Hubbell, J. A. Tissue, cell and engineering. Curr. Opin. Biotechnol. 24, 827–829 (2013).

    Article  CAS  Google Scholar 

  2. Guvendiren, M. & Burdick, J. A. Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr. Opin. Biotechnol. 24, 841–846 (2013).

    Article  CAS  Google Scholar 

  3. Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    Article  CAS  Google Scholar 

  4. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater. 9, 518–526 (2010).

    Article  CAS  Google Scholar 

  5. Wade, R. J. & Burdick, J. A. Engineering ECM signals into biomaterials. Mater. Today 15, 454–459 (October, 2012).

    Article  CAS  Google Scholar 

  6. Alijotas-Reig, J., Fernández-Figueras, M. T. & Puig, L. Late-onset inflammatory adverse reactions related to soft tissue filler injections. Clin. Rev. Allergy Immunol. 45, 97–108 (2013).

    Article  CAS  Google Scholar 

  7. Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).

    Article  CAS  Google Scholar 

  8. Galler, K. M., Aulisa, L., Regan, K. R., D’Souza, R. N. & Hartgerink, J. D. Self-assembling multidomain peptide hydrogels: Designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading. J. Am. Chem. Soc. 132, 3217–3223 (2010).

    Article  CAS  Google Scholar 

  9. Wang, D-A. et al. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nature Mater. 6, 385–392 (2007).

    Article  CAS  Google Scholar 

  10. Kong, H. J., Kaigler, D., Kim, K. & Mooney, D. J. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules 5, 1720–1727 (2004).

    Article  CAS  Google Scholar 

  11. Burdick, J. A., Chung, C., Jia, X., Randolph, M. A. & Langer, R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6, 386–391 (2005).

    Article  CAS  Google Scholar 

  12. Madden, L. R. et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl Acad. Sci. USA 107, 15211–15216 (2010).

    Article  Google Scholar 

  13. Stachowiak, A. N., Bershteyn, A., Tzatzalos, E. & Irvine, D. J. Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties. Adv. Mater. 17, 399–403 (2005).

    Article  CAS  Google Scholar 

  14. Gorgieva, S. & Kokol, V. Preparation, characterization, and in vitro enzymatic degradation of chitosan-gelatine hydrogel scaffolds as potential biomaterials. J. Biomed. Mater. Res. A 100, 1655–1667 (2012).

    Article  CAS  Google Scholar 

  15. Sokic, S., Christenson, M., Larson, J. & Papavasiliou, G. In situ generation of cell-laden porous MMP-sensitive PEGDA hydrogels by gelatin leaching. Macromol. Biosci. 14, 731–739 (2014).

    Article  CAS  Google Scholar 

  16. Hosokawa, K., Fujii, T. & Endo, I. Handling of picoliter liquid samples in a poly(dimethylsiloxane)-based microfluidic device. Anal. Chem. 71, 4781–4785 (1999).

    Article  CAS  Google Scholar 

  17. Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using ‘flow focusing’ in microchannels. Appl. Phys. Lett. 82, 364–366 (2003).

    Article  CAS  Google Scholar 

  18. Kawakatsu, T., Kikuchi, Y. & Nakajima, M. Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J. Am. Oil Chem. Soc. 74, 317–321 (1997).

    Article  CAS  Google Scholar 

  19. Li, C. Y., Wood, D. K., Hsu, C. M. & Bhatia, S. N. DNA-templated assembly of droplet-derived PEG microtissues. Lab Chip 11, 2967–2975 (2011).

    Article  CAS  Google Scholar 

  20. Du, Y., Lo, E., Ali, S. & Khademhosseini, A. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl Acad. Sci. USA 105, 9522–9527 (2008).

    Article  Google Scholar 

  21. Qi, H. et al. DNA-directed self-assembly of shape-controlled hydrogels. Nature Commun. 4, 2275 (2013).

    Article  CAS  Google Scholar 

  22. Jgamadze, D. et al. Colloids as mobile substrates for the implantation and integration of differentiated neurons into the mammalian brain. PLoS ONE 7, e30293 (2012).

    Article  CAS  Google Scholar 

  23. Pautot, S., Wyart, C. & Isacoff, E. Y. Colloid-guided assembly of oriented 3D neuronal networks. Nature Methods 5, 735–740 (2008).

    Article  CAS  Google Scholar 

  24. Dunne, M., Corrigan, O. I. & Ramtoola, Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 21, 1659–1668 (2000).

    Article  CAS  Google Scholar 

  25. Chen, H. et al. Hydrogel-thickened microemulsion for topical administration of drug molecule at an extremely low concentration. Int. J. Pharm. 341, 78–84 (2007).

    Article  CAS  Google Scholar 

  26. Conchouso, D., Castro, D., Khan, S. A. & Foulds, I. G. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions. Lab Chip 14, 3011–3020 (2014).

    Article  CAS  Google Scholar 

  27. Griffin, D. R. et al. Hybrid photopatterned enzymatic reaction (HyPER) for in situ cell manipulation. ChemBioChem 15, 233–242 (2014).

    Article  CAS  Google Scholar 

  28. Schense, J. C. & Hubbell, J. A. Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug. Chem. 10, 75–81 (1999).

    Article  CAS  Google Scholar 

  29. Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnol. 23, 47–55 (2005).

    Article  CAS  Google Scholar 

  30. Chen, E. J., Novakofski, J., Jenkins, W. K. & O’Brien, J. W. D. Young’s modulus measurements of soft tissues with application to elasticity imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 191–194 (1996).

    Article  Google Scholar 

  31. Cheng, S. & Bilston, L. E. Unconfined compression of white matter. J. Biomech. 40, 117–124 (2007).

    Article  Google Scholar 

  32. Parker, K. J., Huang, S. R., Musulin, R. A. & Lerner, R. M. Tissue response to mechanical vibrations for ‘sonoelasticity imaging’. Ultrasound Med. Biol. 16, 241–246 (1990).

    Article  CAS  Google Scholar 

  33. Samani, A., Bishop, J., Luginbuhl, C. & Plewes, D. B. Measuring the elastic modulus of ex vivo small tissue samples. Phys. Med. Biol. 48, 2183–2198 (2003).

    Article  Google Scholar 

  34. Yeh, W-C. et al. Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med. Biol. 28, 467–474 (2002).

    Article  Google Scholar 

  35. Galiano, R. D., Michaels, J., Dobryansky, M., Levine, J. P. & Gurtner, G. C. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen. 12, 485–492 (2004).

    Article  Google Scholar 

  36. Fukano, Y. et al. Characterization of an in vitro model for evaluating the interface between skin and percutaneous biomaterials. Wound Repair Regen. 14, 484–491 (2006).

    Article  Google Scholar 

  37. Fukano, Y. et al. Epidermal and dermal integration into sphere-templated porous poly(2-hydroxyethyl methacrylate) implants in mice. J. Biomed. Mater. Res. A 94A, 1172–1186 (2010).

    CAS  Google Scholar 

  38. Wang, H-M. et al. Novel biodegradable porous scaffold applied to skin regeneration. PLoS ONE 8, e56330 (2013).

    Article  CAS  Google Scholar 

  39. Wang, X., Ge, J., Tredget, E. E. & Wu, Y. The mouse excisional wound splinting model, including applications for stem cell transplantation. Nature Protoc. 8, 302–309 (2013).

    Article  CAS  Google Scholar 

  40. Ota, T. et al. Notch signaling may be involved in the abnormal differentiation of epidermal keratinocytes in psoriasis. Acta Histochem. Cytochem. 47, 175–183 (2014).

    Article  CAS  Google Scholar 

  41. Bramfeld, H., Sabra, G., Centis, V. & Vermette, P. Scaffold vascularization: A challenge for three-dimensional tissue engineering. Curr. Med. Chem. 17, 3944–3967 (2010).

    Article  Google Scholar 

  42. Hollister, S. J. Porous scaffold design for tissue engineering. Nature Mater. 4, 518–524 (2005).

    Article  CAS  Google Scholar 

  43. Yang, S., Leong, K-F., Du, Z. & Chua, C-K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7, 679–689 (2001).

    Article  CAS  Google Scholar 

  44. Peters, M. C., Polverini, P. J. & Mooney, D. J. Engineering vascular networks in porous polymer matrices. J. Biomed. Mater. Res. 60, 668–678 (2002).

    Article  CAS  Google Scholar 

  45. Winkler, E. A., Bell, R. D. & Zlokovic, B. V. Pericyte-specific expression of PDGFβ receptor in mouse models with normal and deficient PDGFβ receptor signaling. Mol. Neurodegener. 5, 32 (2010).

    Article  CAS  Google Scholar 

  46. Huang, F-J. et al. Pericyte deficiencies lead to aberrant tumor vascularizaton in the brain of the NG2 null mouse. Dev. Biol. 344, 1035–1046 (2010).

    Article  CAS  Google Scholar 

  47. Stratman, A. N., Malotte, K. M., Mahan, R. D., Davis, M. J. & Davis, G. E. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114, 5091–5101 (2009).

    Article  CAS  Google Scholar 

  48. Rustad, K. C. et al. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials 33, 80–90 (2012).

    Article  CAS  Google Scholar 

  49. Richardson, T. P., Peters, M. C., Ennett, A. B. & Mooney, D. J. Polymeric system for dual growth factor delivery. Nature Biotechnol. 19, 1029–1034 (2001).

    Article  CAS  Google Scholar 

  50. Sun, G. et al. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc. Natl Acad. Sci. USA 108, 20976–20981 (2011).

    Article  Google Scholar 

  51. Tokatlian, T., Cam, C. & Segura, T. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model. Adv. Healthc. Mater. (2015) 10.1002/adhm.201400783

  52. Liang, W. et al. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation. Lab. Invest. 94, 491–502 (2014).

    Article  CAS  Google Scholar 

  53. Latger-Cannard, V., Besson, I., Doco-Lecompte, T. & Lecompte, T. A standardized procedure for quantitation of CD11b on polymorphonuclear neutrophil by flow cytometry: Potential application in infectious diseases. Clin. Lab. Haematol. 26, 177–186 (2004).

    Article  CAS  Google Scholar 

  54. Lucas, T. et al. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 184, 3964–3977 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Vucetic for assistance with gelation-kinetics measurements. This work was partially supported through the US National Institutes of Health Director’s New Innovator Award (1DP2OD007113), NIH RO1HL110592, and the DermSTP Training Grant T32-AR058921.

Author information

Authors and Affiliations

Authors

Contributions

D.R.G. and W.M.W. contributed equally to this manuscript, both in conceptual design, troubleshooting, experimental execution and manuscript writing. P.O.S. performed Day 1 immunological analysis and in vivo interpretation. D.D.C. and T.S. contributed equally to overseeing experimental design and interpretation.

Corresponding authors

Correspondence to Dino Di Carlo or Tatiana Segura.

Ethics declarations

Competing interests

The authors have a financial interest in Tempo Therapeutics, which aims to commercialize MAP technology.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2884 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Griffin, D., Weaver, W., Scumpia, P. et al. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nature Mater 14, 737–744 (2015). https://doi.org/10.1038/nmat4294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4294

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing