Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization

Abstract

Whether two species will co-crystallize depends on the chemical, physical and structural complementarity of the interacting components. Here, by using DNA as a surface ligand, we selectively co-crystallize mixtures of two different anisotropic nanoparticles and systematically investigate the effects of nanoparticle size and shape complementarity on the resultant crystal symmetry, microstrain, and effective ‘DNA bond’ length and strength. We then use these results to understand a more complicated system where both size and shape complementarity change, and where one nanoparticle can participate in multiple types of directional interactions. Our findings offer improved control of non-spherical nanoparticles as building blocks for the assembly of sophisticated macroscopic materials, and provide a framework to understand complementarity and directional interactions in DNA-mediated nanoparticle crystallization.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The degree of size and shape complementarity between two collections of DNA-modified anisotropic nanoparticles dictate to what extent the hybridization of surface DNA ligands can drive co-crystallization.
Figure 2: Two collections of cube PAEs with complementary DNA but different edge length were co-crystallized to investigate the effect of size complementarity.
Figure 3: Two collections of cube-shaped PAEs with the same size but with concave or convex faces were functionalized with complementary DNA and co-crystallized to investigate the effects of shape complementarity.
Figure 4: The number and type of directional interactions each nanoparticle can participate in is related to nanoparticle shape.

References

  1. Bishop, K. J. M., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    CAS  Article  Google Scholar 

  2. Jones, M. R., Osberg, K. D., Macfarlane, R. J., Langille, M. R. & Mirkin, C. A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111, 3736–3827 (2011).

    CAS  Article  Google Scholar 

  3. Macfarlane, R. J., O’Brien, M. N., Petrosko, S. H. & Mirkin, C. A. Nucleic acid-modified nanostructures as programmable atom equivalents: Forging a new “table of elements”. Angew. Chem. Int. Ed. 52, 5688–5698 (2013).

    CAS  Article  Google Scholar 

  4. Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nature Mater. 7, 527–538 (2008).

    CAS  Article  Google Scholar 

  5. Grzelczak, M., Vermant, J., Furst, E. M. & Liz-Marzán, L. M. Directed self-assembly of nanoparticles. ACS Nano 4, 3591–3605 (2010).

    CAS  Article  Google Scholar 

  6. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    CAS  Article  Google Scholar 

  7. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    CAS  Article  Google Scholar 

  8. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    CAS  Article  Google Scholar 

  9. Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009).

    CAS  Article  Google Scholar 

  10. Dong, A. G., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466, 474–477 (2010).

    CAS  Article  Google Scholar 

  11. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    CAS  Article  Google Scholar 

  12. Li, T. I. N. G., Sknepnek, R., Macfarlane, R. J., Mirkin, C. A. & Olvera de la Cruz, M. Modeling the crystallization of spherical nucleic acid nanoparticle conjugates with molecular dynamics simulations. Nano Lett. 12, 2509–2514 (2012).

    CAS  Article  Google Scholar 

  13. Macfarlane, R. J., Jones, M. R., Lee, B., Auyeung, E. & Mirkin, C. A. Topotactic interconversion of nanoparticle superlattices. Science 341, 1222–1225 (2013).

    CAS  Article  Google Scholar 

  14. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  15. Jones, M. R. et al. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nature Mater. 9, 913–917 (2010).

    CAS  Article  Google Scholar 

  16. Quan, Z. & Fang, J. Superlattices with non-spherical building blocks. Nano Today 5, 390–411 (2010).

    CAS  Article  Google Scholar 

  17. Jones, M. R., Macfarlane, R. J., Prigodich, A. E., Patel, P. C. & Mirkin, C. A. Nanoparticle shape anisotropy dictates the collective behavior of surface-bound ligands. J. Am. Chem. Soc. 133, 18865–18869 (2011).

    CAS  Article  Google Scholar 

  18. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    CAS  Article  Google Scholar 

  19. Walker, D. A., Leitsch, E. K., Nap, R. J., Szleifer, I. & Grzybowski, B. A. Geometric curvature controls the chemical patchiness and self-assembly of nanoparticles. Nature Nanotech. 8, 676–681 (2013).

    CAS  Article  Google Scholar 

  20. Ye, X. et al. Competition of shape and interaction patchiness for self-assembling nanoplates. Nature Chem. 5, 466–473 (2013).

    CAS  Article  Google Scholar 

  21. O’Brien, M. N., Radha, B., Brown, K. A., Jones, M. R. & Mirkin, C. A. Langmuir analysis of nanoparticle polyvalency in DNA-mediated adsorption. Angew. Chem. Int. Ed. 53, 9532–9538 (2014).

    Article  Google Scholar 

  22. Singh, G. et al. Self-assembly of magnetite nanocubes into helical superstructures. Science 345, 1149–1153 (2014).

    CAS  Article  Google Scholar 

  23. Boles, M. A. & Talapin, D. V. Self-assembly of tetrahedral CdSe nanocrystals: Effective “patchiness” via anisotropic steric interaction. J. Am. Chem. Soc. 136, 5868–5871 (2014).

    CAS  Article  Google Scholar 

  24. Ming, T. et al. Ordered gold nanostructure assemblies formed by droplet evaporation. Angew. Chem. Int. Ed. 47, 9685–9690 (2008).

    CAS  Article  Google Scholar 

  25. Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010).

    CAS  Article  Google Scholar 

  26. Ye, X. et al. Shape alloys of nanorods and nanospheres from self-assembly. Nano Lett. 13, 4980–4988 (2013).

    CAS  Article  Google Scholar 

  27. Paik, T. & Murray, C. B. Shape-directed binary assembly of anisotropic nanoplates: A nanocrystal puzzle with shape-complementary building blocks. Nano Lett. 13, 2952–2956 (2013).

    CAS  Article  Google Scholar 

  28. Kang, Y. et al. Design of Pt–Pd binary superlattices exploiting shape effects and synergistic effects for oxygen reduction reactions. J. Am. Chem. Soc. 135, 42–45 (2012).

    Article  Google Scholar 

  29. Paik, T., Ko, D-K., Gordon, T. R., Doan-Nguyen, V. & Murray, C. B. Studies of liquid crystalline self-assembly of GdF3 nanoplates by in-plane, out-of-plane SAXS. ACS Nano 5, 8322–8330 (2011).

    CAS  Article  Google Scholar 

  30. Macfarlane, R. J. et al. Importance of the DNA “bond” in programmable nanoparticle crystallization. Proc. Natl Acad. Sci. USA 111, 14995–15000 (2014).

    CAS  Article  Google Scholar 

  31. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347 (2015)10.1126/science.1260901

  32. Macfarlane, R. J. et al. Establishing the design rules for DNA-mediated programmable colloidal crystallization. Angew. Chem. Int. Ed. 49, 4589–4592 (2010).

    CAS  Article  Google Scholar 

  33. Auyeung, E. et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2014).

    Article  Google Scholar 

  34. O’Brien, M. N., Jones, M. R., Brown, K. A. & Mirkin, C. A. Universal noble metal nanoparticle seeds realized through iterative reductive growth and oxidative dissolution reactions. J. Am. Chem. Soc. 136, 7603–7606 (2014).

    Article  Google Scholar 

  35. O’Brien, M. N., Jones, M. R., Kohlstedt, K. L., Schatz, G. C. & Mirkin, C. A. Uniform circular disks with synthetically tailorable diameters: Two-dimensional nanoparticles for plasmonics. Nano Lett. 15, 1012–1017 (2015).

    Article  Google Scholar 

  36. Senesi, A. & Lee, B. Scattering functions of polyhedra. J. Appl. Cryst. 48, 565–577 (2015).

    CAS  Article  Google Scholar 

  37. Auyeung, E., Macfarlane, R. J., Choi, C. H. J., Cutler, J. I. & Mirkin, C. A. Transitioning DNA-engineered nanoparticle superlattices from solution to the solid state. Adv. Mater. 24, 5181–5186 (2012).

    CAS  Article  Google Scholar 

  38. Williamson, G. K. & Hall, W. H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. Mater. 1, 22–31 (1953).

    CAS  Article  Google Scholar 

  39. Weidenthaler, C. Pitfalls in the characterization of nanoporous and nanosized materials. Nanoscale 3, 792–810 (2011).

    CAS  Article  Google Scholar 

  40. Senesi, A. J. et al. Oligonucleotide flexibility dictates crystal quality in DNA-programmable nanoparticle superlattices. Adv. Mater. 26, 7235–7240 (2014).

    CAS  Article  Google Scholar 

  41. Jin, R. C., Wu, G. S., Li, Z., Mirkin, C. A. & Schatz, G. C. What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125, 1643–1654 (2003).

    CAS  Article  Google Scholar 

  42. Storhoff, J. J. et al. What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 122, 4640–4650 (2000).

    CAS  Article  Google Scholar 

  43. Mergny, J. L. & Lacroix, L. Analysis of thermal melting curves. Oligonucleotides 13, 515–537 (2003).

    CAS  Article  Google Scholar 

  44. Zheng, J. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

    CAS  Article  Google Scholar 

  45. Schreiber, R. et al. Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nature Nano 9, 74–78 (2014).

    CAS  Article  Google Scholar 

  46. Gerling, T., Wagebauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    CAS  Article  Google Scholar 

  47. Jones, M. R. & Mirkin, C. A. Bypassing the limitations of classical chemical purification with DNA-programmable nanoparticle recrystallization. Angew. Chem. Int. Ed. 52, 2886–2891 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

C.A.M. acknowledges support from the following awards: the Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) FA9550-11-1-0275, the Department of Defense National Security Science and Engineering Faculty Fellowship (NSSEFF) award N00014-15-1-0043, the National Science Foundation (NSF) Materials Research Science and Engineering Center program DMR-1121262 at the Materials Research Center of Northwestern University, and the Non-equilibrium Energy Research Center (NERC)—an Energy Frontier Research Center funded by the Department of Energy (DoE), Office of Science, and Office of Basic Energy Sciences under Award DE-SC0000989. M.N.O. and M.R.J. are grateful to the NSF for Graduate Research Fellowships. SAXS experiments were carried out at the Dupont–Northwestern–Dow Collaborative Access Team beamline at the Advanced Photon Source (APS) at Argonne National Laboratory, and use of the APS was supported by the DoE (DE-AC02-06CH11357). This work made use of the EPIC facility (NUANCE Center-Northwestern University), which has received support from the MRSEC programme (NSF DMR-1121262) at the Materials Research Center, and the Nanoscale Science and Engineering Center (EEC-0118025/003), both programmes of the National Science Foundation, the State of Illinois and Northwestern University. We thank K. A. Brown and A. J. Senesi for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.N.O., M.R.J., B.L. and C.A.M. designed the experiments and analysed data. M.N.O. prepared samples and collected EM, ultraviolet–visible and SAXS data. B.L. wrote the theoretical model and the simulation details found in the Supplementary Information. M.N.O. and C.A.M. wrote the manuscript. B.L. and M.R.J. edited the manuscript.

Corresponding authors

Correspondence to Byeongdu Lee or Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 13216 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

O’Brien, M., Jones, M., Lee, B. et al. Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nature Mater 14, 833–839 (2015). https://doi.org/10.1038/nmat4293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4293

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing