Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Order through entropy

Understanding entropic contributions to common ordering transitions is essential for the design of self-assembling systems with addressable complexity.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Entropic forces.
Figure 2: Schematic of the self-assembly of 'DNA bricks' (each of which is a 32-base string of single-stranded DNA that can bind to four neighbouring bricks) into a complex structure where every brick is distinct and has a unique position.


  1. Onsager, L. Ann. NY Acad. Sci. 51, 627–659 (1949).

    CAS  Article  Google Scholar 

  2. Vroege, G. J. & Lekkerkerker, H. N. W. Rep. Prog. Phys. 55, 1241–1309 (1992).

    CAS  Article  Google Scholar 

  3. Wood, W. W. & Jacobson, J. D. J. Chem. Phys. 27, 1207–1208 (1957).

    CAS  Article  Google Scholar 

  4. Alder, B. J. & Wainwright, T. E. J. Chem. Phys. 27, 1208–1209 (1957).

    CAS  Article  Google Scholar 

  5. Percus, J. K. (ed.) The Many-Body Problem (Interscience, 1963).

    Google Scholar 

  6. Pusey, P. N. & van Megen, W. Nature 320, 340–342 (1986).

    CAS  Article  Google Scholar 

  7. de Nijs, B. et al. Nature Mater. 14, 56–60 (2015).

    CAS  Article  Google Scholar 

  8. Frenkel, D. in Advances in the Computer Simulations of Liquid Crystals (eds Pasini, P. & Zannoni, C.) 51–72 (Kluwer, 2000).

    Book  Google Scholar 

  9. Damasceno, P. F. et al. Science 337, 453–457 (2012).

    CAS  Article  Google Scholar 

  10. Aarts, D. G. A. L., Schmidt, M. & Lekkerkerker, H. N. W. Science 304, 847–850 (2004).

    CAS  Article  Google Scholar 

  11. Asakura, S. & Oosawa, F. J. Chem. Phys. 22, 1255–1256 (1954).

    CAS  Article  Google Scholar 

  12. Vrij, A. Pure Appl. Chem. 48, 471–483 (1976).

    CAS  Article  Google Scholar 

  13. Lekkerkerker, H. N. W. & Tuinier, R. Colloids and the Depletion Interaction (Springer, 2011).

    Book  Google Scholar 

  14. Feng, L., Laderman, B., Sacanna, S. & Chaikin, P. Nature Mater. 14, 61–65 (2015).

    CAS  Article  Google Scholar 

  15. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Science 338, 1177–1183 (2012).

    CAS  Article  Google Scholar 

  16. Whitelam, S. & Jack, R. L. Preprint at (2014).

  17. Cadermartiri, L. & Bishop, K. J. M. Nature Mater. 14, 2–9 (2015).

    Article  Google Scholar 

  18. Dobzhansky, T. Am. Biol. Teach. 35, 125–129 (1973).

    Article  Google Scholar 

  19. Clausius, R. Annalen der Physik 125, 353400 (1865).

    Google Scholar 

  20. Planck, M. Annalen der Physik 309, 553–563 (1901).

    Article  Google Scholar 

  21. Frenkel, D. Mol. Phys. 112, 2325–2329 (2014).

    CAS  Article  Google Scholar 

Download references


This work has been supported by the ERC Advanced Grant 227758 and the EPSRC Programme Grant EP/I001352/1.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Daan Frenkel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frenkel, D. Order through entropy. Nature Mater 14, 9–12 (2015).

Download citation

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing