The role of graphene for electrochemical energy storage

Abstract

Since its first isolation in 2004, graphene has become one of the hottest topics in the field of materials science, and its highly appealing properties have led to a plethora of scientific papers. Among the many affected areas of materials science, this 'graphene fever' has influenced particularly the world of electrochemical energy-storage devices. Despite widespread enthusiasm, it is not yet clear whether graphene could really lead to progress in the field. Here we discuss the most recent applications of graphene — both as an active material and as an inactive component — from lithium-ion batteries and electrochemical capacitors to emerging technologies such as metal–air and magnesium-ion batteries. By critically analysing state-of-the-art technologies, we aim to address the benefits and issues of graphene-based materials, as well as outline the most promising results and applications so far.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of the most common graphene production methods.
Figure 2
Figure 3: Features and limitations of graphene as an active material in different EESDs.
Figure 4: Structural models and a possible drawback of graphene composites.

References

  1. 1

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  3. 3

    Graphene Flagship; http://graphene-flagship.eu/.

  4. 4

    Singh, V. et al. Graphene based materials: Past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011).

    Article  CAS  Google Scholar 

  5. 5

    Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article  CAS  Google Scholar 

  6. 6

    Wu, Z.-S. et al. Graphene/metal oxide composite electrode materials for energy storage. Nano Energ. 1, 107–131 (2012).

    Article  CAS  Google Scholar 

  7. 7

    Bianco, A. et al. All in the graphene family – A recommended nomenclature for two-dimensional carbon materials. Carbon 65, 1–6 (2013).

    Article  CAS  Google Scholar 

  8. 8

    Ivanovskii, A. L. Graphene-based and graphene-like materials. Russ. Chem. Rev. 81, 571–605 (2012).

    Article  CAS  Google Scholar 

  9. 9

    Sivudu, K. S. & Mahajan, Y. R. Challenges and opportunities for the mass production of high quality graphene: An analysis of worldwide patents. Nanotech Insights 3, 6–18 (2012).

    Google Scholar 

  10. 10

    Warner, J. H., Schäffel, F., Bachmatiuk, A. & Rümmeli, M. H. Graphene: Fundamentals and Emergent Applications Ch. 4 (Elsevier, 2013).

    Google Scholar 

  11. 11

    Miller, J. R., Outlaw, R. A. & Holloway, B. C. Graphene double-layer capacitor with ac line-filtering performance. Science 329, 1637–1639 (2010).

    Article  CAS  Google Scholar 

  12. 12

    Yoon, Y. et al. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8, 4580–4590 (2014).

    Article  CAS  Google Scholar 

  13. 13

    Cai, M., Thorpe, D., Adamson, D. H. & Schniepp, H. C. Methods of graphite exfoliation. J. Mater. Chem. 22, 24992–25002 (2012).

    Article  CAS  Google Scholar 

  14. 14

    Wei, D. et al. Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices. Chem. Commun. 48, 1239–1241 (2012).

    Article  CAS  Google Scholar 

  15. 15

    Paton, K. R. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Mater. 13, 624–630 (2014).

    Article  CAS  Google Scholar 

  16. 16

    Tour, J. M. Layered materials: Scaling up exfoliation. Nature Mater. 13, 545–546 (2014).

    Article  CAS  Google Scholar 

  17. 17

    Hummers, W. S. Jr & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1957).

    Article  Google Scholar 

  18. 18

    Kovtyukhova, N. I. et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999).

    Article  CAS  Google Scholar 

  19. 19

    Li, D., Müller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech. 3, 101–105 (2008).

    Article  CAS  Google Scholar 

  20. 20

    Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).

    Article  CAS  Google Scholar 

  21. 21

    Park, S. & Ruoff, R. S. Chemical methods for the production of graphenes. Nature Nanotech. 4, 217–224 (2009).

    Article  CAS  Google Scholar 

  22. 22

    Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    Article  CAS  Google Scholar 

  23. 23

    Wu, Y. et al. Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Res. 3, 661–669 (2010).

    Article  CAS  Google Scholar 

  24. 24

    Hou, J., Shao, Y., Ellis, M. W., Moore, R. B. & Yi, B. Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries. Phys. Chem. Chem. Phys. 13, 15384–15402 (2011).

    Article  CAS  Google Scholar 

  25. 25

    Hirata, M., Gotou, T., Horiuchi, S., Fujiwara, M. & Ohba, M. Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon 42, 2929–2937 (2004).

    CAS  Google Scholar 

  26. 26

    Gao, W., Alemany, L. B., Ci, L. & Ajayan, P. M. New insights into the structure and reduction of graphite oxide. Nature Chem. 1, 403–408 (2009).

    Article  CAS  Google Scholar 

  27. 27

    Compton, O. C. & Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 6, 711–723 (2010).

    Article  CAS  Google Scholar 

  28. 28

    Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    Article  CAS  Google Scholar 

  29. 29

    Scrosati, B. & Garche, J. Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010).

    Article  CAS  Google Scholar 

  30. 30

    Dahn, J. R., Zheng, T., Liu, Y. & Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995).

    Article  CAS  Google Scholar 

  31. 31

    Liu, Y., Xue, J. S., Zheng, T. & Dahn, J. R. Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34, 193–200 (1996).

    Article  CAS  Google Scholar 

  32. 32

    Winter, M., Besenhard, J. O., Spahr, M. E. & Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–763 (1998).

    Article  CAS  Google Scholar 

  33. 33

    Vargas, C. O. A., Caballero, Á. & Morales, J. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? Nanoscale 4, 2083–2092 (2012).

    Article  CAS  Google Scholar 

  34. 34

    Zhang, W.-J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011).

    Article  CAS  Google Scholar 

  35. 35

    Landi, B. J., Ganter, M. J., Cress, C. D., DiLeo, R. A. & Raffaelle, R. P. Carbon nanotubes for lithium ion batteries. Energ. Environ. Sci. 2, 638–654 (2009).

    Article  CAS  Google Scholar 

  36. 36

    Xiang, H. F. et al. Graphene sheets as anode materials for Li-ion batteries: Preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv. 2, 6792–6799 (2012).

    Article  CAS  Google Scholar 

  37. 37

    Vargas, O., Caballero, Á. & Morales, J. Enhanced electrochemical performance of maghemite/graphene nanosheets composite as electrode in half and full Li–ion cells. Electrochim. Acta 130, 551–558 (2014).

    Article  CAS  Google Scholar 

  38. 38

    Hassoun, J. et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 14, 4901–4906 (2014).

    Article  CAS  Google Scholar 

  39. 39

    Zhu, J., Yang, D., Yin, Z., Yan, Q. & Zhang, H. Graphene and graphene-based materials for energy storage applications. Small 10, 3480–3498 (2014).

    Article  CAS  Google Scholar 

  40. 40

    Zhou, G., Li, F. & Cheng, H.-M. Progress in flexible lithium batteries and future prospects. Energ. Environ. Sci. 7, 1307–1338 (2014).

    Article  CAS  Google Scholar 

  41. 41

    Xu, C. et al. Graphene-based electrodes for electrochemical energy storage. Energ. Environ. Sci. 6, 1388–1414 (2013).

    Article  CAS  Google Scholar 

  42. 42

    Huang, X., Zeng, Z., Fan, Z., Liu, J. & Zhang, H. Graphene-based electrodes. Adv. Mater. 24, 5979–6004 (2012).

    Article  CAS  Google Scholar 

  43. 43

    Sun, Y., Wu, Q. & Shi, G. Graphene based new energy materials. Energ. Environ. Sci. 4, 1113–1132 (2011).

    Article  CAS  Google Scholar 

  44. 44

    Lee, W. W. & Lee, J.-M. Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs). J. Mater. Chem. A 2, 1589–1626 (2014).

    Article  CAS  Google Scholar 

  45. 45

    Ai, W. et al. Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv. Mater. 26, 6186–6192 (2014).

    Article  CAS  Google Scholar 

  46. 46

    Chen, J. S. & Lou, X. W. D. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small 9, 1877–1893 (2013).

    Article  CAS  Google Scholar 

  47. 47

    Cao, Y. et al. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012).

    Article  CAS  Google Scholar 

  48. 48

    Wang, Y.-X., Chou, S.-L., Liu, H.-K. & Dou, S.-X. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57, 202–208 (2013).

    Article  CAS  Google Scholar 

  49. 49

    Ding, J. et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7, 11004–11015 (2013).

    Article  CAS  Google Scholar 

  50. 50

    Hong, S. Y. et al. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energ. Environ. Sci. 6, 2067–2081 (2013).

    Article  CAS  Google Scholar 

  51. 51

    Yu, D. Y. W. et al. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nature Commun. 4, 2922 (2013).

    Article  CAS  Google Scholar 

  52. 52

    Prikhodchenko, P. V. et al. Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes. J. Mater. Chem. A 2, 8431–8437 (2014).

    Article  CAS  Google Scholar 

  53. 53

    Nithya, C. & Gopukumar, S. rGO/nano Sb composite: A high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling. J. Mater. Chem. A 2, 10516–10525 (2014).

    Article  CAS  Google Scholar 

  54. 54

    Qin, G., Zhang, X. & Wang, C. Design of nitrogen doped graphene grafted TiO2 hollow nanostructures with enhanced sodium storage performance. J. Mater. Chem. A 2, 12449–12458 (2014).

    Article  CAS  Google Scholar 

  55. 55

    Qu, B. et al. Layered SnS2-reduced graphene oxide composite — A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26, 3854–3859 (2014).

    Article  CAS  Google Scholar 

  56. 56

    Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 7, 845–854 (2008).

    Article  CAS  Google Scholar 

  57. 57

    Stoller, M. D., Park, S., Zhu, Y., An, J. & Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008).

    Article  CAS  Google Scholar 

  58. 58

    Chen, J., Li, C. & Shi, G. Graphene materials for electrochemical capacitors. J. Phys. Chem. Lett. 4, 1244–1253 (2013).

    Article  CAS  Google Scholar 

  59. 59

    Bose, S. et al. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 22, 767–784 (2012).

    Article  CAS  Google Scholar 

  60. 60

    Zhu, Y. et al. Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011).

    Article  CAS  Google Scholar 

  61. 61

    Tsai, W.-Y. et al. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80°C. Nano Energ. 2, 403–411 (2013).

    Article  CAS  Google Scholar 

  62. 62

    Huang, Y., Liang, J. & Chen, Y. An overview of the applications of graphene-based materials in supercapacitors. Small 8, 1805–1834 (2012).

    Article  CAS  Google Scholar 

  63. 63

    Gogotsi, Y. & Simon, P. True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011).

    Article  CAS  Google Scholar 

  64. 64

    Beidaghi, M. & Gogotsi, Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energ. Environ. Sci. 7, 867–884 (2014).

    Article  CAS  Google Scholar 

  65. 65

    Xu, B. et al. What is the choice for supercapacitors: Graphene or graphene oxide? Energ. Environ. Sci. 4, 2826–2830 (2011).

    Article  CAS  Google Scholar 

  66. 66

    Han, G. et al. MnO2 nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance supercapacitors. Sci. Rep. 4, 4824 (2014).

    Article  Google Scholar 

  67. 67

    Lee, J.-S. et al. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energ. Mater. 1, 34–50 (2011).

    Article  CAS  Google Scholar 

  68. 68

    Ogasawara, T., Débart, A., Holzapfel, M., Novák, P. & Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006).

    Article  CAS  Google Scholar 

  69. 69

    Kim, H., Lim, H.-D., Kim, J. & Kang, K. Graphene for advanced Li/S and Li/air batteries. J. Mater. Chem. A 2, 33–47 (2014).

    Article  CAS  Google Scholar 

  70. 70

    Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium−air battery: Promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).

    Article  CAS  Google Scholar 

  71. 71

    Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K. & Scrosati, B. An improved high-performance lithium-air battery. Nature Chem. 4, 579–585 (2012).

    Article  CAS  Google Scholar 

  72. 72

    Jung, H.-G. et al. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium–air batteries. ACS Nano 7, 3532–3539 (2013).

    Article  CAS  Google Scholar 

  73. 73

    Hartmann, P. et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nature Mater. 12, 228–232 (2013).

    Article  CAS  Google Scholar 

  74. 74

    Liu, W., Sun, Q., Yang, Y., Xie, J.-Y. & Fu, Z.-W. An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts. Chem. Commun. 49, 1951–1953 (2013).

    Article  CAS  Google Scholar 

  75. 75

    Li, Y. et al. Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium–air batteries. Chem. Commun. 49, 11731–11733 (2013).

    Article  CAS  Google Scholar 

  76. 76

    Kucinskis, G., Bajars, G. & Kleperis, J. Graphene in lithium ion battery cathode materials: A review. J. Power Sources 240, 66–79 (2013).

    Article  CAS  Google Scholar 

  77. 77

    Jung, Y. H., Lim, C. H. & Kim, D. K. Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium–ion batteries. J. Mater. Chem. A 1, 11350–11354 (2013).

    Article  CAS  Google Scholar 

  78. 78

    Xu, M. et al. Na3V2O2(PO4)2F/graphene sandwich structure for high-performance cathode of a sodium–ion battery. Phys. Chem. Chem. Phys. 15, 13032–13037 (2013).

    Article  CAS  Google Scholar 

  79. 79

    Zhu, H. et al. Free-standing Na2/3Fe1/2Mn1/2O2@graphene film for a sodium–ion battery cathode. ACS Appl. Mater. Interfaces 6, 4242–4247 (2014).

    Article  CAS  Google Scholar 

  80. 80

    Yang, D., Liao, X.-Z., Shen, J., He, Y.-S. & Ma, Z.-F. A flexible and binder-free reduced graphene oxide/Na2/3Ni1/3Mn2/3O2 composite electrode for high-performance sodium ion batteries. J. Mater. Chem. A 2, 6723–6726 (2014).

    Article  CAS  Google Scholar 

  81. 81

    Zu, C. & Manthiram, A. Hydroxylated graphene-sulfur nanocomposites for high-rate lithium–sulfur batteries. Adv. Energ. Mater. 3, 1008–1012 (2013).

    Article  CAS  Google Scholar 

  82. 82

    Zhao, M.-Q. et al. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nature Commun. 5, 3410 (2014).

    Article  CAS  Google Scholar 

  83. 83

    Lu, S., Chen, Y., Wu, X., Wang, Z. & Li, Y. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium–sulfur batteries with large areal mass loading. Sci. Rep. 4, 4629 (2014).

    Article  CAS  Google Scholar 

  84. 84

    Yin, Y.-X., Xin, S., Guo, Y.-G. & Wan, L.-J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013).

    Article  CAS  Google Scholar 

  85. 85

    Yoo, H. D. et al. Mg rechargeable batteries: An on-going challenge. Energ. Environ. Sci. 6, 2265–2279 (2013).

    Article  CAS  Google Scholar 

  86. 86

    Liu, Y. et al. Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries. Nanoscale 5, 9562–9567 (2013).

    Article  CAS  Google Scholar 

  87. 87

    Chen, Q. et al. PTMA/graphene as a novel cathode material for rechargeable magnesium batteries. Acta Physico-Chimica Sin. 29, 2295–2299 (2013).

    CAS  Google Scholar 

  88. 88

    Wang, Y., Zhamu, A. & Jang, B. Z. Rechargable magnesium-ion cell having a high-capacity cathode. US Patent 2013/0302697 (2013).

  89. 89

    Weber, A. Z. et al. Redox flow batteries: A review. J. Appl. Electrochem. 41, 1137–1164 (2011).

    Article  CAS  Google Scholar 

  90. 90

    González, Z. et al. Graphite oxide-based graphene materials as positive electrodes in vanadium redox flow batteries. J. Power Sources 241, 349–354 (2013).

    Article  CAS  Google Scholar 

  91. 91

    Han, P. et al. Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries. Energ. Environ. Sci. 4, 4710–4717 (2011).

    Article  CAS  Google Scholar 

  92. 92

    González, Z. et al. Thermally reduced graphite oxide as positive electrode in vanadium redox flow batteries. Carbon 50, 828–834 (2012).

    Article  CAS  Google Scholar 

  93. 93

    Flox, C., Skoumal, M., Rubio-Garcia, J., Andreu, T. & Morante, J. R. Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries. Appl. Energ. 109, 344–351 (2013).

    Article  CAS  Google Scholar 

  94. 94

    Han, P. et al. RuSe/reduced graphene oxide: An efficient electrocatalyst for VO2+/VO2+ redox couples in vanadium redox flow batteries. RSC Adv. 4, 20379–20381 (2014).

    Article  CAS  Google Scholar 

  95. 95

    Shi, L., Liu, S., He, Z. & Shen, J. Nitrogen-doped graphene: Effects of nitrogen species on the properties of the vanadium redox flow battery. Electrochim. Acta 138, 93–100 (2014).

    Article  CAS  Google Scholar 

  96. 96

    Dai, W., Shen, Y., Li, Z., Yu, L. & Qiu, X. SPEEK/graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. J. Mater. Chem. A 2, 12423–12432 (2014).

    Article  CAS  Google Scholar 

  97. 97

    Dai, W. et al. Sulfonated poly(ether ether ketone)/graphene composite membrane for vanadium redox flow battery. Electrochim. Acta 132, 200–207 (2014).

    Article  CAS  Google Scholar 

  98. 98

    Vargas, O. et al. Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell. Phys. Chem. Chem. Phys. 15, 20444–20446 (2013).

    Article  CAS  Google Scholar 

  99. 99

    Choi, D. et al. Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage. Electrochem. Commun. 12, 378–381 (2010).

    Article  CAS  Google Scholar 

  100. 100

    Chae, C., Noh, H.-J., Lee, J. K., Scrosati, B. & Sun, Y.-K. A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode. Adv. Func. Mater. 24, 3036–3042 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.R., A.V. and S.P. acknowledge the financial support of Bundesministerium für Bildung und Forschung (BMBF) within the project 'IES, Innovative Elektrochemische Superkondensatoren' (contract number 03EK3010). B.S. is grateful to the Helmholtz Institute Ulm for a six-month visiting professorship position.

Author information

Affiliations

Authors

Contributions

R.R. and A.V. designed the outline of the Progress Article, wrote the manuscript and conceived the figures and tables. S.P. and B.S. supervised and revised the writing.

Corresponding authors

Correspondence to Stefano Passerini or Bruno Scrosati.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raccichini, R., Varzi, A., Passerini, S. et al. The role of graphene for electrochemical energy storage. Nature Mater 14, 271–279 (2015). https://doi.org/10.1038/nmat4170

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing