Article | Published:

Highly confined low-loss plasmons in graphene–boron nitride heterostructures

Nature Materials volume 14, pages 421425 (2015) | Download Citation

Abstract

Graphene plasmons were predicted to possess simultaneous ultrastrong field confinement and very low damping, enabling new classes of devices for deep-subwavelength metamaterials, single-photon nonlinearities, extraordinarily strong light–matter interactions and nano-optoelectronic switches. Although all of these great prospects require low damping, thus far strong plasmon damping has been observed, with both impurity scattering and many-body effects in graphene proposed as possible explanations. With the advent of van der Waals heterostructures, new methods have been developed to integrate graphene with other atomically flat materials. In this Article we exploit near-field microscopy to image propagating plasmons in high-quality graphene encapsulated between two films of hexagonal boron nitride (h-BN). We determine the dispersion and plasmon damping in real space. We find unprecedentedly low plasmon damping combined with strong field confinement and confirm the high uniformity of this plasmonic medium. The main damping channels are attributed to intrinsic thermal phonons in the graphene and dielectric losses in the h-BN. The observation and in-depth understanding of low plasmon damping is the key to the development of graphene nanophotonic and nano-optoelectronic devices.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

  2. 2.

    & Van der Waals heterostructures. Nature 499, 419–425 (2013).

  3. 3.

    et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Phys. 8, 382–386 (2012).

  4. 4.

    et al. Hybrid surface-phonon–plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett. 14, 3876–3880 (2014).

  5. 5.

    , & Generation and morphing of plasmons in graphene superlattices. Phys. Rev. B 90, 161406(R) (2014).

  6. 6.

    , , & Hyperbolic metamaterials. Nature Photon. 7, 948–957 (2013).

  7. 7.

    et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

  8. 8.

    et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nature Commun. 5, 5221 (2014).

  9. 9.

    , & Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

  10. 10.

    et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

  11. 11.

    , , & Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B 84, 161407(R) (2011).

  12. 12.

    , & Graphene plasmonics: A platform for strong light-matter interactions. Nano Lett. 11, 3370–3377 (2011).

  13. 13.

    , & Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

  14. 14.

    et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012).

  15. 15.

    et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photon. 7, 394–399 (2013).

  16. 16.

    , , , & Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 13, 2541–2547 (2013).

  17. 17.

    et al. Tunable large resonant absorption in a midinfrared graphene Salisbury screen. Phys. Rev. B 90, 165409 (2014).

  18. 18.

    , & Graphene for terahertz applications. Science 341, 620–621 (2013).

  19. 19.

    & Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8, 1086–1101 (2014).

  20. 20.

    Graphene plasmonics: Challenges and opportunities. ACS Photonics 1, 135–152 (2014).

  21. 21.

    et al. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 14, 299–304 (2014).

  22. 22.

    et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

  23. 23.

    et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

  24. 24.

    et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

  25. 25.

    & Near-field microscopy by elastic light scattering from a tip. Phil. Trans. R. Soc. Lond. A 362, 787–805 (2004).

  26. 26.

    , & Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

  27. 27.

    et al. Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC. Nano Lett. 13, 6210–6215 (2013).

  28. 28.

    et al. Electronic and plasmonic phenomena at graphene grain boundaries. Nature Nanotech. 8, 821–825 (2013).

  29. 29.

    , & Synthetic optical holography for rapid nanoimaging. Nature Commun. 5, 3499 (2014).

  30. 30.

    et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

  31. 31.

    , , & Phase-resolved surface pasmon interferometry of graphene. Phys. Rev. Lett. 113, 055502 (2014).

  32. 32.

    et al. Plasmon losses due to electron–phonon scattering: The case of graphene encapsulated in hexagonal boron nitride. Phys. Rev. B 90, 165408 (2014).

  33. 33.

    et al. Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

  34. 34.

    et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Mater. 10, 282–285 (2011).

  35. 35.

    , & Excitation of propagating plasmons in semi-infinite graphene layer by free space photons. Commun. Theory Phys. 61, 751–754 (2014).

  36. 36.

    & Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

  37. 37.

    , , & Impact of disorder on Dirac plasmon losses. Phys. Rev. B 88, 121405(R) (2013).

  38. 38.

    , , & Intrinsic lifetime of Dirac plasmons in graphene. Phys. Rev. B 88, 195405 (2013).

  39. 39.

    et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008).

  40. 40.

    et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

  41. 41.

    , , , & Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6, 431–440 (2012).

  42. 42.

    & Transformation optics using graphene. Science 332, 1291–1294 (2011).

  43. 43.

    et al. Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. Nano Lett. 14, 1573–1577 (2014).

  44. 44.

    , , & Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys. Rev. B 85, 081405(R) (2012).

  45. 45.

    , & Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012).

  46. 46.

    , , , & Single-photon nonlinear optics with graphene plasmons. Phys. Rev. Lett. 111, 247401 (2013).

  47. 47.

    , , , & Superradiance mediated by graphene surface plasmons. Phys. Rev. B 85, 155438 (2012).

  48. 48.

    , , & Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318 (2006).

  49. 49.

    & Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

  50. 50.

    , & Linear response of doped graphene sheets to vector potentials. Phys. Rev. B 80, 075418 (2009).

  51. 51.

    , , , & Infrared reflectance spectrum of BN calculated from first principles. Solid State Commun. 141, 262–266 (2007).

Download references

Acknowledgements

It is a great pleasure to thank J. D. Caldwell, J. García de Abajo, A. Tomadin and L. Levitov for many useful discussions. This work used open source software (www.matplotlib.org, www.python.org). F.H.L.K. acknowledges support by the Fundacio Cellex Barcelona, the ERC Career integration grant 294056 (GRANOP), the ERC starting grant 307806 (CarbonLight), and support by EU project GRASP (FP7-ICT-2013-613024-GRASP). F.H.L.K., M.P. and R.H. acknowledge support by the EU under Graphene Flagship (contract no. CNECT-ICT-604391). A.P. and G.V. acknowledge DOE grant DE-FG02-05ER46203 and a Research Board Grant at the University of Missouri. M.P. and M.C. acknowledge support by the Italian Ministry of Education, Universities and Research (MIUR) through the programme ‘FIRB – Futuro in Ricerca’, Project PLASMOGRAPH (Grant No. RBFR10M5BT) and Project HybridNanoDev (Grant No. RBFR1236VV). M.P. also acknowledges support by the MIUR through the programme ‘Progetti Premiali 2012’ – Project ABNANOTECH. R.H. acknowledges support by the ERC starting grant 258461 (TERATOMO) and the Spanish Ministry of Economy and Competitiveness (National Project MAT2012-36580). Y.G. and J.H. acknowledge support from the US Office of Naval Research N00014-13-1-0662.

Author information

Author notes

    • Achim Woessner
    • , Mark B. Lundeberg
    • , Yuanda Gao
    •  & Frank H. L. Koppens

    These authors contributed equally to this work.

Affiliations

  1. ICFO – Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain

    • Achim Woessner
    • , Mark B. Lundeberg
    •  & Frank H. L. Koppens
  2. Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA

    • Yuanda Gao
    •  & James Hone
  3. Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA

    • Alessandro Principi
    •  & Giovanni Vignale
  4. CIC nanoGUNE, 20018 Donostia-San Sebastian, Spain

    • Pablo Alonso-González
  5. NEST, Istituto Nanoscienze – CNR and Scuola Normale Superiore, 56126 Pisa, Italy

    • Matteo Carrega
    •  & Marco Polini
  6. SPIN-CNR, Via Dodecaneso 33, 16146 Genova, Italy

    • Matteo Carrega
  7. National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

    • Kenji Watanabe
    •  & Takashi Taniguchi
  8. Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30 16163 Genova, Italy

    • Marco Polini
  9. CIC nanoGUNE and UPV/EHU, 20018 Donostia-San Sebastian, Spain

    • Rainer Hillenbrand
  10. IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain

    • Rainer Hillenbrand

Authors

  1. Search for Achim Woessner in:

  2. Search for Mark B. Lundeberg in:

  3. Search for Yuanda Gao in:

  4. Search for Alessandro Principi in:

  5. Search for Pablo Alonso-González in:

  6. Search for Matteo Carrega in:

  7. Search for Kenji Watanabe in:

  8. Search for Takashi Taniguchi in:

  9. Search for Giovanni Vignale in:

  10. Search for Marco Polini in:

  11. Search for James Hone in:

  12. Search for Rainer Hillenbrand in:

  13. Search for Frank H. L. Koppens in:

Contributions

A.W. and M.B.L. performed the experiments, discussed the results and wrote the manuscript. Y.G. fabricated the samples. A.P., M.P., G.V. and M.C. provided the theory on different loss mechanisms. P.A-G. helped with measurements. K.W. and T.T. synthesized the h-BN samples. G.V., M.P., J.H., R.H. and F.H.L.K. supervised the work, discussed the results and co-wrote the manuscript. All authors contributed to the scientific discussion and manuscript revisions.

Competing interests

R.H. is co-founder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems such as the ones used in this study. All other authors declare no competing financial interests.

Corresponding author

Correspondence to Frank H. L. Koppens.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4169

Further reading