Soft 3D acoustic metamaterial with negative index

Subjects

Abstract

Many efforts have been devoted to the design and achievement of negative-refractive-index metamaterials since the 2000s1,2,3,4,5,6,7,8. One of the challenges at present is to extend that field beyond electromagnetism by realizing three-dimensional (3D) media with negative acoustic indices9. We report a new class of locally resonant ultrasonic metafluids consisting of a concentrated suspension of macroporous microbeads engineered using soft-matter techniques. The propagation of Gaussian pulses within these random distributions of ‘ultra-slow’ Mie resonators is investigated through in situ ultrasonic experiments. The real part of the acoustic index is shown to be negative (up to almost − 1) over broad frequency bandwidths, depending on the volume fraction of the microbeads as predicted by multiple-scattering calculations. These soft 3D acoustic metamaterials open the way for key applications such as sub-wavelength imaging and transformation acoustics, which require the production of acoustic devices with negative or zero-valued indices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Soft 3D acoustic metamaterials composed of ultra-slow Mie resonators.
Figure 2: Phase delays of the transmitted signals as a function of propagation distance.
Figure 3: Comparisons between acoustical experiments and theoretical predictions.

References

  1. 1

    Krowne, C. M. & Zong, Y. (eds) Physics of Negative Refraction and Negative Index Materials (Springer, 2007).

    Google Scholar 

  2. 2

    Cubukcu, E. et al. Electromagnetic waves: Negative refraction by photonic crystals. Nature 423, 604–605 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Martinez-Sala, R. et al. Sound attenuation by sculpture. Nature 378, 241 (1995).

    CAS  Article  Google Scholar 

  4. 4

    Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).

    Article  Google Scholar 

  6. 6

    Dolling, G. et al. Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892–894 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon. 5, 523–530 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Wegener, M. Metamaterials beyond optics. Science 342, 939–940 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Liu, Z. Y. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    CAS  Article  Google Scholar 

  11. 11

    Lee, S. et al. Composite acoustic medium with simultaneously negative density and modulus. Phys. Rev. Lett. 104, 054301 (2010).

    Article  Google Scholar 

  12. 12

    Fok, L. & Zhang, X. Negative acoustic index metamaterial. Phys. Rev. B 83, 214304 (2011).

    Article  Google Scholar 

  13. 13

    Liang, Z. & Li, J. Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 108, 114301 (2012).

    Article  Google Scholar 

  14. 14

    Xie, Y. et al. Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 110, 175501 (2013).

    Article  Google Scholar 

  15. 15

    Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3999 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Kadic, M. et al. Metamaterials beyond electromagnetism. Rep. Prog. Phys. 76, 126501 (2013).

    Article  Google Scholar 

  17. 17

    Fang, N. et al. Ultrasonic metamaterials with negative modulus. Nature Mater. 5, 452–456 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Li, J. et al. Experimental demonstration of an acoustic magnifying hyperlens. Nature Mater. 8, 931–934 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Brunet, T., Leng, J. & Mondain-Monval, O. Soft acoustic metamaterials. Science 342, 323–324 (2013).

    CAS  Article  Google Scholar 

  20. 20

    Pendry, J. B. & Li, J. An acoustic metafluid: Realizing a broadband acoustic cloak. New J. Phys. 10, 115032 (2008).

    Article  Google Scholar 

  21. 21

    Norris, A. N. Acoustic metafluids. J. Acoust. Soc. Am. 125, 839–849 (2009).

    Article  Google Scholar 

  22. 22

    Seeman, R. et al. Droplet based microfluidics. Rep. Prog. Phys. 75, 016601 (2012).

    Article  Google Scholar 

  23. 23

    Brunet, T. et al. Tuning Mie scattering resonances in soft materials with magnetic fields. Phys. Rev. Lett. 111, 264301 (2013).

    Article  Google Scholar 

  24. 24

    Li, J. & Chan, C. T. Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004).

    Article  Google Scholar 

  25. 25

    Still, T. et al. Soft silicone rubber in phononic structures: Correct elastic moduli. Phys. Rev. B 88, 094102 (2013).

    Article  Google Scholar 

  26. 26

    Allard, J-F. Propagation of Sound in Porous Media (Springer, 1993).

    Google Scholar 

  27. 27

    Bretagne, A., Tourin, A. & Leroy, V. Enhanced and reduced transmission of acoustic waves with bubble meta-screens. Appl. Phys. Lett. 99, 221906 (2011).

    Article  Google Scholar 

  28. 28

    Dubois, J., Aristégui, C. & Poncelet, O. Spaces of electromagnetic and mechanical constitutive parameters for dissipative media with either positive or negative index. J. Appl. Phys. 115, 024902 (2014).

    Article  Google Scholar 

  29. 29

    Gokmen, M. & Du Prez, F. Porous polymer particles - A comprehensive guide to synthesis, characterization, functionalization and applications. Prog. Polym. Sci. 37, 365–405 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Brunet, T. et al. Sharp acoustic multipolar-resonances in highly monodisperse emulsions. Appl. Phys. Lett. 101, 011913 (2012).

    Article  Google Scholar 

  31. 31

    Leroy, V. et al. Sound velocity and attenuation in bubbly gels measured by transmission experiments. J. Acoust. Soc. Am. 123, 1931–1940 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Page, J. H. et al. Group velocity in strongly scattering media. Science 271, 634–637 (1996).

    CAS  Article  Google Scholar 

  33. 33

    Waterman, P. C. & Truell, R. Multiple scattering of waves. J. Math. Phys. 2, 512–537 (1961).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence Nationale pour la Recherche (Grant 2011-BS0902101 Metakoustik-Aerospace Valley) and the US Air Force European Office of Aerospace Research and Development (Grant FA8655-12-1-2067). This work was performed under the auspices of the Labex AMADEUS ANR-10-LABX-0042-AMADEUS with the help of French state Initiative d’Excellence IdEx ANR-10-IDEX-003-02. We thank G. Pibre from Bluestar Silicones for fruitful advice and providing us with the silicone rubber, and J. Valencony (Siltech Corp.) for the surfactants.

Author information

Affiliations

Authors

Contributions

T.B., O.M-M., J.L., O.P. and C.A. designed the project. A.M. synthesized the macroporous soft silicone rubber microbeads with the help of K.Z. Formulation aspects were supervised by O.M-M., A.M. set up the microfluidics with the advice of J.L., T.B. and B.M. conducted the acoustical measurements and performed the calculations under the guidance of C.A. and O.P. for the theoretical aspects. T.B. wrote the paper in collaboration with C.A., O.P., J.L. and O.M-M.

Corresponding author

Correspondence to Thomas Brunet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1158 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brunet, T., Merlin, A., Mascaro, B. et al. Soft 3D acoustic metamaterial with negative index. Nature Mater 14, 384–388 (2015). https://doi.org/10.1038/nmat4164

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing