Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments

Subjects

Abstract

Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally ‘program’ the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The design and expression of artificial amphiphilic proteins with the potential for self-assembly allows the formation of cellular compartments in E. coli.
Figure 2: The influence of the translational order and ratio of amphiphilic block domains on the subcellular distribution and higher-order structure formation in vivo.
Figure 3: The self-assembly of mEGFP–E20F20 proteins to form vesicular-like structures in vitro and in vivo visualized by cryo-TEM, HPF- and conventional TEM.
Figure 4: TIRF and TIRF–SIM fluorescence microscopy images resolve the structure of the artificial cellular compartments in E. coli cells.
Figure 5: The site-selective modification of cellular compartments.

Similar content being viewed by others

References

  1. Shively, J. M., Decker, G. L. & Greenawalt, J. W. Comparative ultrastructure of the thiobacilli. J. Bacteriol. 101, 618–627 (1970).

    CAS  Google Scholar 

  2. Shively, J. M., Ball, F., Brown, D. H. & Saunders, R. E. Functional organelles in prokaryotes: Polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182, 584–586 (1973).

    Article  CAS  Google Scholar 

  3. Yeates, T. O., Kerfeld, C. A., Heinhorst, S., Cannon, G. C. & Shively, J. M. Protein-based organelles in bacteria: Carboxysomes and related microcompartments. Nature Rev. Microbiol. 6, 681–691 (2008).

    Article  CAS  Google Scholar 

  4. Kerfeld, C. A., Heinhorst, S. & Cannon, G. C. Bacterial microcompartments. Annu. Rev. Microbiol. 64, 391–408 (2010).

    Article  CAS  Google Scholar 

  5. Cheng, S., Liu, Y., Crowley, C. S., Yeates, T. O. & Bobik, T. A. Bacterial microcompartments: Their properties and paradoxes. BioEssays 30, 1084–1095 (2008).

    Article  CAS  Google Scholar 

  6. Roodbeen, R. & Van Hest, J. C. M. Synthetic cells and organelles: Compartmentalization strategies. BioEssays 31, 1299–1308 (2009).

    Article  CAS  Google Scholar 

  7. Parsons, J. B. et al. Synthesis of empty bacterial microcompartments, directed organelle protein incorporation, and evidence of filament-associated organelle movement. Mol. Cell 38, 305–315 (2010).

    Article  CAS  Google Scholar 

  8. Vargo, K. B., Parthasarathy, R. & Hammer, D. A. Self-assembly of tunable protein suprastructures from recombinant oleosin. Proc. Natl Acad. Sci. USA 109, 11657–11662 (2012).

    Article  CAS  Google Scholar 

  9. Kim, W., Thévenot, J., Ibarboure, E., Lecommandoux, S. & Chaikof, E. L. Self-assembly of thermally responsive amphiphilic diblock copolypeptides into spherical micellar nanoparticles. Angew. Chem. Int. Ed. 49, 4257–4260 (2010).

    Article  CAS  Google Scholar 

  10. Bellomo, E. G., Wyrsta, M. D., Pakstis, L., Pochan, D. J. & Deming, T. J. Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nature Mater. 3, 244–248 (2004).

    Article  CAS  Google Scholar 

  11. Martín, L., Castro, E., Ribeiro, A., Alonso, M. & Rodríguez-Cabello, J. C. Temperature-triggered self-assembly of elastin-like block co-recombinamers: The controlled formation of micelles and vesicles in an aqueous medium. Biomacromolecules 13, 293–298 (2012).

    Article  Google Scholar 

  12. Agapakis, C. M., Boyle, P. M. & Silver, P. A. Natural strategies for the spatial optimization of metabolism in synthetic biology. Nature Chem. Biol. 8, 527–535 (2012).

    Article  CAS  Google Scholar 

  13. Medema, M. H., van, R. R., Takano, E. & Breitling, R. Computational tools for the synthetic design of biochemical pathways. Nature Rev. Microbiol. 10, 191–202 (2012).

    Article  CAS  Google Scholar 

  14. Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotechnol. 27, 753–759 (2009).

    Article  CAS  Google Scholar 

  15. Medema, M. H., Breitling, R., Bovenberg, R. & Takano, E. Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nature Rev. Microbiol. 9, 131–137 (2011).

    Article  CAS  Google Scholar 

  16. LeDuc, P. R. et al. Towards an in vivo biologically inspired nanofactory. Nature Nanotech. 2, 3–7 (2007).

    CAS  Google Scholar 

  17. Israelachvili, J. N. Intermolecular and Surface Forces 3rd edn (Academic Press, 2011).

    Google Scholar 

  18. Cho, Y. et al. Hydrogen bonding of β-turn structure is stabilized in D2O. J. Am. Chem. Soc. 131, 15188–15193 (2009).

    Article  CAS  Google Scholar 

  19. Kurková, D. et al. Structure and dynamics of two elastin-like polypentapeptides studied by NMR spectroscopy. Biomacromolecules 4, 589–601 (2003).

    Article  Google Scholar 

  20. Dreher, M. R. et al. Temperature triggered self-assembly of polypeptides into multivalent spherical micelles. J. Am. Chem. Soc. 130, 687–694 (2008).

    Article  CAS  Google Scholar 

  21. Lee, T. A. T., Cooper, A., Apkarian, R. P. & Conticello, V. P. Thermo-reversible self-assembly of nanoparticles derived from elastin-mimetic polypeptides. Adv. Mater. 12, 1105–1110 (2000).

    Article  CAS  Google Scholar 

  22. Urry, D. W. et al. Elastin: A representative ideal protein elastomer. Phil. Trans. R. Soc. Lond. B 357, 169–184 (2002).

    Article  CAS  Google Scholar 

  23. Lee, S. C., Choi, Y. C. & Yu, M-H. Effect of the N-terminal hydrophobic sequence of hepatitis B virus surface antigen on the folding and assembly of hybrid β-galactosidase in Escherichia coli. Eur. J. Biochem. 187, 417–424 (1990).

    Article  CAS  Google Scholar 

  24. Cabrita, L. D., Dobson, C. M. & Christodoulou, J. Protein folding on the ribosome. Curr. Opin. Struct. Biol. 20, 33–45 (2010).

    Article  CAS  Google Scholar 

  25. Vanhecke, D., Graber, W. & Studer, D. in Methods in Cell Biology Vol. 88 (ed. Allen, T. D.) 151–164 (Academic Press, 2008).

    Google Scholar 

  26. Hurbain, I. & Sachse, M. The future is cold: Cryo-preparation methods for transmission electron microscopy of cells. Biol. Cell 103, 405–420 (2011).

    Article  Google Scholar 

  27. McDonald, K. & Auer, M. High-pressure freezing, cellular tomography, and structural cell biology. BioTechniques 41, 137–143 (2006).

    Article  CAS  Google Scholar 

  28. Walde, P., Wick, R., Fresta, M., Mangone, A. & Luisi, P. L. Autopoietic self-reproduction of fatty acid vesicles. J. Am. Chem. Soc. 116, 11649–11654 (1994).

    Article  CAS  Google Scholar 

  29. Shimamoto, T. et al. The NhaB Na+/H+ antiporter is essential for intracellular pH regulation under alkaline conditions in Escherichia coli. J. Biochem. 116, 285–290 (1994).

    Article  CAS  Google Scholar 

  30. Record, M. T. Jr, Courtenay, E. S., Cayley, D. S. & Guttman, H. J. Responses of E. coli to osmotic stress: Large changes in amounts of cytoplasmic solutes and water. Trends Biochem. Sci. 23, 143–148 (1998).

    Article  CAS  Google Scholar 

  31. Chen, I. A. & Walde, P. From self-assembled vesicles to protocells. Cold Spring Harb. Perspect. Biol. 2 (2010).

  32. Hirvonen, L., Wicker, K., Mandula, O. & Heintzmann, R. Structured illumination microscopy of a living cell. Eur. Biophys. J. 38, 807–812 (2009).

    Article  Google Scholar 

  33. Dash, B. C. et al. Tunable elastin-like polypeptide hollow sphere as a high payload and controlled delivery gene depot. J. Control. Release 152, 382–392 (2011).

    Article  CAS  Google Scholar 

  34. Chin, J. W. et al. Addition of p-Azido-L-phenylalanine to the genetic code of Escherichia coli. J. Am. Chem. Soc. 124, 9026–9027 (2002).

    Article  CAS  Google Scholar 

  35. Wang, L., Brock, A., Herberich, B. & Schultz, P. G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    Article  CAS  Google Scholar 

  36. Laughlin, S. T., Baskin, J. M., Amacher, S. L. & Bertozzi, C. R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008).

    Article  CAS  Google Scholar 

  37. Varga, B. R., Kállay, M., Hegyi, K., Béni, S. & Kele, P. A non-fluorinated monobenzocyclooctyne for rapid copper-free click reactions. Chem. Eur. J. 18, 822–828 (2012).

    Article  CAS  Google Scholar 

  38. Schreiber, A. & Schiller, S. M. Nanobiotechnology of protein compartments: Steps towards nanofactories. Bioinsp. Biomim. Nanobiomater. 4, 157–164 (2013).

    Google Scholar 

  39. Baneyx, F. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10, 411–421 (1999).

    Article  CAS  Google Scholar 

  40. Glick, B. R. Metabolic load and heterologous gene expression. Biotechnol. Adv. 13, 247–261 (1995).

    Article  CAS  Google Scholar 

  41. Huber, M. C. et al. Introducing a combinatorial DNA-toolbox platform constituting defined protein-based biohybrid-materials. Biomaterials 35, 8767–8779 (2014).

    Article  CAS  Google Scholar 

  42. Schrand, A. M., Schlager, J. J., Dai, L. & Hussain, S. M. Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy. Nature Protocols 5, 744–757 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Thomann for in vitro TEM images and the element-specific imaging and high-contrast imaging measurements. For the LC–MS/MS analysis we thank M. Samalikova and J. Dengjel. We are grateful to P. G. Schultz, TSRI, La Jolla, California, USA for providing the plasmid pEVOLpAzF. P.K. acknowledges the financial support of the Hungarian Scientific Research Fund (OTKA, grant numbers K-100134, NN-110214) and the ‘Lendület’ Program of the Hungarian Academy of Sciences (LP2013-55/2013) is greatly acknowledged. We are grateful to the Freiburg Institute for Advanced Studies (FRIAS), the Institute for Macromolecular Chemistry, the Institute for Pharmaceutical Sciences, the Institute for Micro System Engineering (IMTEK), the competence network of functional nanostructures (KFN), the Baden-Württemberg Stiftung, the Ministry of Science, Research and the Arts (MWK) Baden-Württemberg, the German Science Foundation (DFG): SPP1623 and EXC 294 BIOSS Centre for Biological Signalling Studies, the BMBF (BMBF Forschungspreis 2014) and the Rectorate of the University of Freiburg for support.

Author information

Authors and Affiliations

Authors

Contributions

S.M.S. conceived the project. A.S. performed the in vitro and in vivo characterization of the newly cloned proteins and their formed structures using fluorescence microscopy and TEM. Further, A.S. conducted the bio-orthogonal modification of the artificial organelles in vivo. M.C.H. designed and cloned the different protein constructs, and carried out the coexpression experiments and in vivo characterization using fluorescence microscopy. A.S. and M.C.H. contributed equally to the paper. P.v.O. performed the TIRF and TIRF–SIM measurements. P.K. and B.R.V. designed and synthesized the copper-free clickable fluorescent dye. O.K. conducted the HPF experiments. B.J. did the in vivo TEM micrographs. S.B. conducted the cryo in vitro TEM analysis. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Stefan M. Schiller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1561 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 2267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huber, M., Schreiber, A., von Olshausen, P. et al. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments. Nature Mater 14, 125–132 (2015). https://doi.org/10.1038/nmat4118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing