Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN

Abstract

First-order phase transitions are accompanied by a latent heat. Consequently, manipulating them by means of an external field causes a caloric effect. Although transitions from antiferromagnetic to paramagnetic states are not controlled by a magnetic field, a large barocaloric effect is expected when strong cross-correlations between the volume and magnetic order occur. Here we examine how geometric frustration in itinerant antiferromagnetic compounds can enhance the barocaloric effect. We study the thermodynamic behaviour of the frustrated antiferromagnet Mn3GaN, and report an entropy change of 22.3 J kg−1 K−1 that is concomitant with a hydrostatic pressure change of 139 MPa. Furthermore, the calculated value of the adiabatic temperature change reaches 5 K by depressurization of 93 MPa. The giant barocaloric effect in Mn3GaN is caused by a frustration-driven enhancement of the ratio of volume change against the pressure coefficient of the Néel temperature. This mechanism for enhancing the barocaloric effect can form the basis for a new class of materials for solid-state refrigerants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DTA curve as a function of temperature in Mn3GaN.
Figure 2: Entropy as a function of temperature in Mn3GaN.
Figure 3: Temperature dependence of ΔS of Mn3GaN.
Figure 4: Adiabatic temperature change in Mn3GaN.
Figure 5: Schematic representations of spin structures in Mn3GaN (111).

Similar content being viewed by others

References

  1. Pecharsky, V. K. & Gschneidner, K. A. Jr Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494–4497 (1997).

    Article  CAS  Google Scholar 

  2. Fujita, A., Fujieda, S., Hasegawa, Y. & Fukamichi, K. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1−x)13 compounds and their hydrides. Phys. Rev. B 67, 104416 (2003).

    Article  Google Scholar 

  3. Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W. & Mathur, N. D. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3 . Science 311, 1270–1271 (2006).

    Article  CAS  Google Scholar 

  4. Moya, X. et al. Giant electrocaloric strength in single-crystal BaTiO3 . Adv. Mater. 25, 1360–1365 (2013).

    Article  CAS  Google Scholar 

  5. Wada, H., Taniguchi, K. & Tanabe, Y. Extremely large magnetic entropy change of MnAs1−xSbx near room temperature. Mater. Trans. 43, 73–77 (2002).

    Article  CAS  Google Scholar 

  6. Krenke, T. et al. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nature Mater. 4, 450–454 (2005).

    Article  CAS  Google Scholar 

  7. Mañosa, L. et al. Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound. Nature Commun. 2, 595 (2011).

    Article  Google Scholar 

  8. Mañosa, L. et al. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nature Mater. 9, 478–481 (2010).

    Article  Google Scholar 

  9. Yuce, S. et al. Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2 . Appl. Phys. Lett. 101, 071906 (2012).

    Article  Google Scholar 

  10. Bonnot, E., Romero, R., Mañosa, L., Vives, E. & Planes, A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys. Rev. Lett. 100, 125901 (2008).

    Article  Google Scholar 

  11. Castillo-Villa, P. O. et al. Elastocaloric and magnetocaloric effects in Ni–Mn–Sn(Cu) shape-memory alloy. J. Appl. Phys. 113, 053506 (2013).

    Article  Google Scholar 

  12. Strässle, T., Furrer, A. & Müller, K. A. Cooling by adiabatic application of pressure—the barocaloric effect. Physica B 276–278, 944–945 (2000).

    Article  Google Scholar 

  13. Strässle, T. et al. HoAs: A model compound for the cooling by the barocaloric effect. J. Alloys Compd 323–324, 392–395 (2001).

    Article  Google Scholar 

  14. Strässle, T., Furrer, A., Hossain, Z. & Geibel, C. Magnetic cooling by the application of external pressure in rare-earth compounds. Phys. Rev. B 67, 054407 (2003).

    Article  Google Scholar 

  15. Moriya, T. & Usami, K. Magneto-volume effect and invar phenomena in ferromagnetic metals. Solid State Commun. 34, 95–99 (1980).

    Article  CAS  Google Scholar 

  16. Kamishima, K. et al. Giant magnetoresistance in the intermetallic compound Mn3GaC. Phys. Rev. B 63, 024426 (2001).

    Article  Google Scholar 

  17. Tohei, T., Wada, H. & Kanomata, T. Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC. J. Appl. Phys. 94, 1800–1802 (2003).

    Article  CAS  Google Scholar 

  18. Wang, B. S. et al. Large magnetic entropy change near room temperature in antiperovskite SnCMn3 . Europhys. Lett. 85, 47004 (2009).

    Article  Google Scholar 

  19. Çakir, Ö. & Acet, M. Adiabatic temperature change around coinciding first and second order magnetic transitions in Mn3Ga(C0.85N0.15). J. Magn. Magn. Mater. 344, 207–210 (2013).

    Article  Google Scholar 

  20. Bertaut, E. F., Fruchart, D., Bouchaud, J. P. & Fruchart, R. Diffraction neutronique de Mn3GaN. Solid State Commun. 6, 251–256 (1968).

    Article  CAS  Google Scholar 

  21. Takenaka, K. & Takagi, H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl. Phys. Lett. 87, 261902 (2005).

    Article  Google Scholar 

  22. García, J. et al. Specific heat of the cubic metallic perovskites Mn3ZnN and Mn3GaN. J. Magn. Magn. Mater. 15–18, 1155–1156 (1980).

    Article  Google Scholar 

  23. Mañosa, L. et al. Effects of hydrostatic pressure on the magnetism and martensitic transition of Ni–Mn–In magnetic superelastic alloys. Appl. Phys. Lett. 92, 012515 (2008).

    Article  Google Scholar 

  24. Fujieda, S., Fujita, A. & Fukamichi, K. Strong pressure effect on the Curie temperature of itinerant-electron metamagnetic La(Fe0.88Si0.12)13Hy and La0.7Ce0.3(Fe0.88Si0.12)13Hy . Mater. Trans. 50, 483–486 (2009).

    Article  CAS  Google Scholar 

  25. Saito, H., Yokoyama, T., Fukamichi, K., Kamishima, K. & Goto, T. Itinerant-electron metamagnetism of the Laves-phase compounds Lu(Co1−xGax)2 under high pressures with high magnetic fields. Phys. Rev. B 59, 8725–8731 (1999).

    Article  CAS  Google Scholar 

  26. Hayashi, K., Tajima, K., Saito, H. & Fukamichi, K. X-ray diffraction studies on magneto-volume effect and the first order phase transition in Lu(Co1−xGax)2 . J. Phys. Soc. Jpn 69, 4013–4017 (2000).

    Article  CAS  Google Scholar 

  27. Nashima, O., Suzuki, T., Ido, H., Kamishima, K. & Goto, T. Magnetovolume effects of MnAs1−xSbx . J. Appl. Phys. 79, 4647–4649 (1996).

    Article  CAS  Google Scholar 

  28. Goto, T. et al. Magnetic properties of MnAs0.7Sb0.3 under high pressure: Comparison with the magnetic moment calculated for MnAs with the NiAs-type structure. J. Alloys Compd 325, 18–23 (2001).

    Article  CAS  Google Scholar 

  29. Oomi, G., Terada, T., Shiga, M. & Nakamura, Y. Effect of pressure on the Néel temperature of the intermetallic compound YMn2 . J. Magn. Magn. Mater. 70, 137–138 (1987).

    Article  Google Scholar 

  30. Shiga, M. Magnetism and spin fluctuations of Laves phase manganese compounds. Physica B 149, 293–305 (1988).

    Article  CAS  Google Scholar 

  31. Moriya, T. in Springer Series in Solid-State Sciences (eds Cardiba, M., Fulde, P. & Queisser, H-J.) Vol. 56 (Springer-Verlag, 1985).

    Google Scholar 

  32. Pinski, F. J., Staunton, J., Gyorffy, B. L., Johnson, D. D. & Stocks, G. M. Ferromagnetism versus antiferromagnetism in face-centered-cubic iron. Phys. Rev. Lett. 56, 2096–2099 (1986).

    Article  CAS  Google Scholar 

  33. Staunton, J., Gyorffy, B. L., Pindor, A. J., Stocks, G. M. & Winter, H. Electronic structure of metallic ferromagnets above the Curie temperature. J. Phys. F 15, 1387–1404 (1985).

    Article  CAS  Google Scholar 

  34. Antropov, V. Magnetic short-range order above the Curie temperature of Fe and Ni. Phys. Rev. B 72, 140406R (2005).

    Article  Google Scholar 

  35. Fujita, A. & Yako, H. Stability of metallic, magnetic and electronic states in NaZn13-type La(FexSi1−x)13 magnetocaloric compounds. Scr. Mater. 67, 578–583 (2012).

    Article  CAS  Google Scholar 

  36. Kamakura, N. et al. Electronic structure of La(Fe0.88Si0.12)13 . Mater. Res. Soc. Symp. Proc. 1262, 109–114 (2010).

    Article  Google Scholar 

  37. Shiga, M. in Materials Science and Technology Vol. 3B (eds Cahn, R. W., Haasen, P. & Kramer, E. J.) 159–210 (VCH, 1994).

    Google Scholar 

  38. Takenaka, K. et al. Magnetovolume effects in manganese nitrides with antiperovskite structure. Sci. Technol. Adv. Mater. 15, 015009 (2014).

    Article  Google Scholar 

  39. Anderson, P. W. Resonating valence bonds: A new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).

    Article  CAS  Google Scholar 

  40. Mekata, M. et al. Ground state of the geometrically frustrated system Y(Sc)Mn2 studied by muon spin relaxation. Phys. Rev. B 61, 4088–4092 (2000).

    Article  CAS  Google Scholar 

  41. Shiga, M. et al. Giant spin fluctuations in Y0.97Sc0.03Mn2 . J. Phys. Soc. Jpn 57, 3141–3145 (1988).

    Article  CAS  Google Scholar 

  42. Deportes, J., Ouladdiaf, B. & Ziebeck, K. R. A. Spin fluctuations in the paramagnetic state of YMn2 . J. Magn. Magn. Mater. 70, 14–16 (1996).

    Article  Google Scholar 

  43. Lukashev, P., Sabirianov, R. F. & Belashchenko, L. Theory of the piezomagnetic effect in Mn-based antiperovskites. Phys. Rev. B 78, 184414 (2008).

    Article  Google Scholar 

  44. Kübler, J., Höck, K. H., Sticht, J. & Williams, A. R. Local spin-density functional theory of noncollinear magnetism. J. Appl. Phys. 63, 3482–3486 (1988).

    Article  Google Scholar 

  45. Kim, W. S. et al. Cracks induced by magnetic ordering in the antiperovskite ZnNMn3 . Phys. Rev. B 68, 172402 (2003).

    Article  Google Scholar 

  46. Kudrnovsky, J., Drchal, V. & Turek, I. First-principles study of properties of semi-Heusler (Cu, Ni)MnSb alloys. J. Phys.: Conf. Ser. 200, 032036 (2010).

    Google Scholar 

  47. Akai, H. & Dederichs, P. H. Local moment disorder in ferromagnetic alloys. Phys. Rev. B 47, 8739–8747 (1993).

    Article  CAS  Google Scholar 

  48. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  49. Fujiwara, H., Kadomatsu, H. & Tohma, K. Simple clamp pressure cell up to 30 kbar. Rev. Sci. Instrum. 51, 1345–1348 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science through the Funding Program for Next Generation World-Leading Researchers.

Author information

Authors and Affiliations

Authors

Contributions

D.M. performed the measurements, analysed the results, and wrote the manuscript. A.F. conceived the idea for the work and directed the research. K.T. provided advice on the conditions required to fabricate good samples and was involved in discussions with regard to the enhanced volume change. M.K. suggested the method of pressure measurement. All authors discussed the results and worked on the manuscript.

Corresponding author

Correspondence to Daichi Matsunami.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsunami, D., Fujita, A., Takenaka, K. et al. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nature Mater 14, 73–78 (2015). https://doi.org/10.1038/nmat4117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing