Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth

Abstract

Significant progress has been made in understanding the interaction between mineral precursors and organic components leading to material formation and structuring in biomineralizing systems1,2,3,4,5. The mesostructure of biological materials, such as the outer calcitic shell of molluscs, is characterized by many parameters and the question arises as to what extent they all are, or need to be, controlled biologically. Here, we analyse the three-dimensional structure of the calcite-based prismatic layer of Pinna nobilis6,7,8, the giant Mediterranean fan mussel, using high-resolution synchrotron-based microtomography. We show that the evolution of the layer is statistically self-similar and, remarkably, its morphology and mesostructure can be fully predicted using classical materials science theories for normal grain growth9,10,11,12,13,14,15,16. These findings are a fundamental step in understanding the constraints that dictate the shape of these biogenic minerals and shed light on how biological organisms make use of thermodynamics to generate complex morphologies.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The microstructure of the prismatic layer of P. nobilis.
Figure 2: Mesostructure characterization based on mean field considerations.
Figure 3: Mesostructure characterization based on topological considerations.

References

  1. Weiner, S. & Addadi, L. Crystallization pathways in biomineralization. Annu. Rev. Mater. Res. 41, 21–40 (2011).

    CAS  Article  Google Scholar 

  2. Nudelman, F. & Sommerdijk, N. Biomineralization as an inspiration for materials chemistry. Angew. Chem. Int. Ed. 51, 6582–6596 (2012).

    CAS  Article  Google Scholar 

  3. Schenk, A. S. et al. Systematic study of the effects of polyamines on calcium carbonate precipitation. Chem. Mater. 26, 2703–2711 (2014).

    CAS  Article  Google Scholar 

  4. Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108, 4551–4627 (2008).

    CAS  Article  Google Scholar 

  5. Schenk, A. S. et al. Hierarchical calcite crystals with occlusions of a simple polyelectrolyte mimic complex biomineral structures. Adv. Funct. Mater. 22, 4668–4676 (2012).

    CAS  Article  Google Scholar 

  6. Marin, F., Narayanappa, P. & Motreuil, S. in Molecular Biomineralization Vol. 52 (ed. Müller, W. E. G.) Ch. 13, 353–395 (Springer, 2011).

    Book  Google Scholar 

  7. Taylor, J. & Layman, M. The mechanical properties of bivalve (Mollusca) shell structures. Palaeontology 15, 73–87 (1972).

    Google Scholar 

  8. Marin, F. & Luquet, G. Molluscan biomineralization: The proteinaceous shell constituents of Pinna nobilis L. Mater. Sci. Eng. C 25, 105–111 (2005).

    Article  Google Scholar 

  9. Atkinson, H. V. Theories of normal grain growth in pure single phase systems. Acta Metall. 36, 469–491 (1988).

    CAS  Article  Google Scholar 

  10. Hillert, M. On the theory of normal and abnormal grain growth. Acta Metall. 13, 227–238 (1965).

    CAS  Article  Google Scholar 

  11. Mullins, W. W. Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27, 900–904 (1956).

    Article  Google Scholar 

  12. Von Neumann, J. in Metal Interfaces (ed Herring, C.) 108–110 (American Society of Metals, 1952).

    Google Scholar 

  13. Burke, J. & Turnbull, D. Recrystallization and grain growth. Prog. Met. Phys. 3, 220–244 (1952).

    CAS  Article  Google Scholar 

  14. Srolovitz, D. J., Anderson, M. P., Crest, G. S. & Sahni, P. S. Computer simulation of grain growth-II. Grain size distribution, topology, and local dynamics. Acta Metall. 32, 793–802 (1984).

    CAS  Article  Google Scholar 

  15. Smith, C. S. Some elementary principles of polycrystalline microstructure. Metall. Rev. 9, 1–48 (1964).

    CAS  Google Scholar 

  16. Smith, C. S. Structure, substructure, and superstructure. Rev. Mod. Phys. 36, 524–532 (1964).

    Article  Google Scholar 

  17. Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    CAS  Article  Google Scholar 

  18. Dauphin, Y. et al. In situ mapping of growth lines in the calcitic prismatic layers of mollusc shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur K-edge. Mar. Biol. 142, 299–304 (2003).

    Article  Google Scholar 

  19. Pokroy, B., Fitch, A. & Zolotoyabko, E. The microstructure of biogenic calcite: A view by high-resolution synchrotron powder diffraction. Adv. Mater. 18, 2363–2368 (2006).

    CAS  Article  Google Scholar 

  20. Dauphin, Y. Comparison of the soluble matrices of the calcitic prismatic layer of Pinnanobilis (Mollusca, Bivalvia, Pteriomorpha). Comp. Biochem. Physiol. A 132, 577–590 (2002).

    CAS  Article  Google Scholar 

  21. Olson, I. C. et al. Crystal nucleation and near-epitaxial growth in nacre. J. Struct. Biol. 184, 454–463 (2013).

    CAS  Article  Google Scholar 

  22. Checa, A. G., Rodríguez-Navarro, A. B. & Esteban-Delgado, F. J. The nature and formation of calcitic columnar prismatic shell layers in pteriomorphian bivalves. Biomaterials 26, 6404–6414 (2005).

    CAS  Article  Google Scholar 

  23. Thompson, C. V. Grain growth in thin films. Annu. Rev. Mater. Sci. 20, 245–268 (1990).

    CAS  Article  Google Scholar 

  24. Barmak, K. et al. Grain growth and the puzzle of its stagnation in thin films: The curious tale of a tail and an ear. Prog. Mater. Sci. 58, 987–1055 (2013).

    CAS  Article  Google Scholar 

  25. Beck, P. Annealing of cold worked metals. Adv. Phys. 3, 245–324 (1954).

    Article  Google Scholar 

  26. Mullins, W. W. The statistical self-similarity hypothesis in grain growth and particle coarsening. J. Appl. Phys. 59, 1341–1349 (1986).

    CAS  Article  Google Scholar 

  27. Elsey, M., Esedoglu, S. & Smereka, P. Large-scale simulation of normal grain growth via diffusion-generated motion. Proc. R. Soc. A 467, 381–401 (2010).

    Article  Google Scholar 

  28. Fayad, W., Thompson, C. V. & Frost, H. J. Steady-state grain-size distributions resulting from grain growth in two dimensions. Scripta Mater. 40, 1199–1204 (1999).

    CAS  Article  Google Scholar 

  29. Zöllner, D. & Rios, P. R. Investigating the von Neumann–Mullins relation under triple junction dragging. Acta Mater. 70, 290–297 (2014).

    Article  Google Scholar 

  30. Weitkamp, T., Haas, D., Wegrzynek, D. & Rack, A. ANKAphase: Software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J. Synchrotron Radiat. 18, 617–629 (2011).

    CAS  Article  Google Scholar 

  31. Schneider, C. A, Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671–675 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities on ID19. Project supported in part by the German Science Foundation DFG, project FR 2190/4-1 (Leibniz Prize to P.F.).

Author information

Authors and Affiliations

Authors

Contributions

B.B. prepared the samples for the tomography experiments. B.B., I.Z., P.Z. and A.R. performed the synchrotron-based microtomography experiments. P.Z. and A.R. performed the data processing. B.B., P.F. and I.Z. performed image and data analysis. Y.D. supplied the samples. B.B., P.F. and I.Z. wrote the manuscript. I.Z. conceived the project. All authors commented on the manuscript.

Corresponding author

Correspondence to Igor Zlotnikov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Movie S1 (AVI 4759 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bayerlein, B., Zaslansky, P., Dauphin, Y. et al. Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth. Nature Mater 13, 1102–1107 (2014). https://doi.org/10.1038/nmat4110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4110

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing