Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Materials for stem cell factories of the future

Abstract

Polymeric substrates are being identified that could permit translation of human pluripotent stem cells from laboratory-based research to industrial-scale biomedicine. Well-defined materials are required to allow cell banking and to provide the raw material for reproducible differentiation into lineages for large-scale drug-screening programs and clinical use. Yet more than 1 billion cells for each patient are needed to replace losses during heart attack, multiple sclerosis and diabetes. Producing this number of cells is challenging, and a rethink of the current predominant cell-derived substrates is needed to provide technology that can be scaled to meet the needs of millions of patients a year. In this Review, we consider the role of materials discovery, an emerging area of materials chemistry that is in large part driven by the challenges posed by biologists to materials scientists.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The development of hPSC growth substrates.
Figure 2: High-throughput materials discovery.

References

  1. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocytes. Science 282, 1145–1147 (1998).

    CAS  Article  Google Scholar 

  2. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  Article  Google Scholar 

  3. Rajamohan, D., Matsa, E. & Kalra, S. Current status of drug screening and disease modelling in human pluripotent stem cells. BioEssays 35, 281–298 (2012).

    Google Scholar 

  4. Thomas, R. J. et al. Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnol. Bioeng. 102, 1636–1644 (2009).

    CAS  Google Scholar 

  5. Mahlstedt, M. M. et al. Maintenance of pluripotency in human embryonic stem cells cultured on a synthetic substrate in conditioned medium. Biotechnol. Bioeng. 105, 130–140 (2010).

    CAS  Google Scholar 

  6. Xu, C. et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnol. 19, 971–974 (2001).

    CAS  Google Scholar 

  7. Martin, M. J., Muotri, A., Gage, F. & Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Med. 11, 228–232 (2005).

    CAS  Google Scholar 

  8. Kleinman, H. K. et al. Isolation and characterization of type-IV procollagen, laminin, and heparin-sulfate proteoglycans from EHS sarcoma. Biochemistry 21, 6188–6193 (1982).

    CAS  Google Scholar 

  9. Jin, S., Yao, H., Weber, J. L., Melkoumian, Z. K. & Ye, K. A synthetic, xeno-free peptide surface for expansion and directed differentiation of human induced pluripotent stem cells. PLoS ONE 7, e50880 (2012).

    CAS  Google Scholar 

  10. Nagaoka, M., Si-Tayeb, K., Akaike, T. & Duncan, S. A. Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC Dev. Biol. 10, 60 (2010).

    Google Scholar 

  11. Stelzer, T., Marwood, T. & Neeley, C. Innovative animal component-free surface for the cultivation of human embryonic stem cells. BMC Proc. 5 (Suppl. 8), P51 (2011).

    Google Scholar 

  12. Swistowski, A. et al. Xeno-free defined conditions for culture of human embryonic stem cells, neural stem cells and dopaminergic neurons derived from them. PLoS ONE 4, e6233 (2009).

    Google Scholar 

  13. Ludwig, T. E. et al. Derivation of human embryonic stem cells in defined conditions. Nature Biotechnol. 24, 185–187 (2006).

    CAS  Google Scholar 

  14. Wang, L. et al. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signalling. Blood 110, 4111–4119 (2006).

    Google Scholar 

  15. Bergstrom, R., Strom, S., Holm, F., Feki, A. & Hovatta, O. Xeno-free culture of human pluripotent stem cells. Methods Mol. Biol. 767, 125–136 (2011).

    Google Scholar 

  16. Chen, G. et al. Chemically defined conditions for human iPSC derivation and culture. Nature Methods 8, 424–429 (2011).

    CAS  Google Scholar 

  17. Li, Y., Powell, S., Brunette, E., Lebkowski, J. & Mandalam, R. Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol. Bioeng. 91, 688–698 (2005).

    CAS  Google Scholar 

  18. Genbacev, O. et al. Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil. Steril. 83, 1517–1529 (2005).

    Google Scholar 

  19. Rajala, K. et al. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLoS ONE 5, e12046 (2010).

    Google Scholar 

  20. Furue, M. K. et al. Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc. Natl Acad. Sci. USA 105, 13409–13414 (2008).

    CAS  Google Scholar 

  21. Amit, M., Shakiri, C., Margulets, V. & Itskovitz-Eldor, J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod. 70, 837–845 (2004).

    CAS  Google Scholar 

  22. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnol. 25, 681–686 (2007).

    CAS  Google Scholar 

  23. Xu, Y. et al. Revealing a core signalling regulatory mechanism for pluripotent stem cell survival and self-renewal survival by small molecules. Proc. Natl Acad. Sci. USA 107, 8129–8134 (2010).

    CAS  Google Scholar 

  24. Tsutsui, H. et al. An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nature Commun. 2, 167 (2011).

    Google Scholar 

  25. Qi, X. et al. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc. Natl Acad. Sci. USA 101, 6027–6032 (2004).

    CAS  Google Scholar 

  26. Damoiseaux, R., Sherman, S. P., Alva, J. A., Peterson, C. & Pyle, A. D. Integrated chemical genomics reveals modifiers of survival in human embryonic stem cells. Stem Cells 27, 533–542 (2009).

    CAS  Google Scholar 

  27. Barbaric, I. et al. Novel regulators of stem cell fates identified by a multivariate phenotype screen of small compounds on human embryonic stem cell colonies. Stem Cell Res. 5, 104–119 (2010).

    CAS  Google Scholar 

  28. Buehr, M. et al. Capture of authentic embryonic stem cells from rat blastocysts. Cell 135, 1287–1298 (2008).

    CAS  Google Scholar 

  29. Cai, J. et al. Assessing self-renewal and differentiation in human embryonic stem cell lines. Stem Cells 24, 516–530 (2006).

    CAS  Google Scholar 

  30. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Med. 10, 55–63 (2004).

    CAS  Google Scholar 

  31. Bone, H. K. et al. Involvement of GSK-3 in regulation of murine embryonic stem cell self-renewal revealed by a series of bisindolylmaleimides. Chem. Biol. 16, 15–27 (2009).

    CAS  Google Scholar 

  32. Xiong, L. et al. Heat shock protein 90 is involved in regulation of hypoxia-driven proliferation of embryonic neural stem/progenitor cells. Cell Stress Chaperones 14, 183–192 (2009).

    CAS  Google Scholar 

  33. Miyabayashi, T., Yamamoto, M., Sato, A., Sakano, S. & Takahashi, Y. Indole derivatives sustain embryonic stem cell self-renewal in long-term culture. Biosci. Biotechnol. Biochem. 72, 1242–1248 (2008).

    CAS  Google Scholar 

  34. Chen, L. & Khillan, J. S. Promotion of feeder-independent self-renewal of embryonic stem cells by retinol (vitamin A). Stem Cells 26, 1858–1864 (2008).

    CAS  Google Scholar 

  35. Li, M. et al. Neuronal differentiation of C17.2 neural stem cells induced by a natural flavonoid, baicalin. ChemBioChem 12, 449–456 (2011).

    CAS  Google Scholar 

  36. Anneren, C., Cowan, C. A. & Melton, D. A. The Src family of tyrosine kinases is important for embryonic stem cell self-renewal. J. Biol. Chem. 279, 31590–31598 (2004).

    CAS  Google Scholar 

  37. Miyazaki, T. et al. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem. Biophys. Res. Commun. 375, 27–32 (2008).

    CAS  Google Scholar 

  38. Miyazaki, T. et al. Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nature Commun. 3, 1236–1245 (2012).

    Google Scholar 

  39. Rodin, S. et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnol. 28, 611–615 (2010).

    CAS  Google Scholar 

  40. Derda, R. et al. Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS Chem. Biol. 2, 347–355 (2007).

    CAS  Google Scholar 

  41. Melkoumian, Z. et al. Synthetic peptide-acrylate surfaces for the long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnol. 28, 606–610 (2010).

    CAS  Google Scholar 

  42. Villa-Diaz, L. G. et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnol. 28, 581–583 (2010).

    CAS  Google Scholar 

  43. Irwin, E. E., Gupta, R., Dashti, D. C. & Healy, K. E. Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials 32, 6912–6919 (2011).

    CAS  Google Scholar 

  44. Klim, J. R., Li, L. Y., Wrighton, P. J., Piekarczyk, M. S. & Kiessling L. L. A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature Methods 7, 989–996 (2010).

    CAS  Google Scholar 

  45. Anderson, D. G., Putnam, D., Lavik, E. B., Mahmood, T. A. & Langer, R. Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. Biomaterials 26, 4892–4897 (2005).

    CAS  Google Scholar 

  46. Brocchini, S., James, K., Tangpasuthadol, V. & Kohn, J. A combinatorial approach for polymer design. J. Am. Chem. Soc. 119, 4553–4554 (1997).

    CAS  Google Scholar 

  47. Brafman, D. A. et al. Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials 31, 9135–9144 (2010).

    CAS  Google Scholar 

  48. Anderson, D. G., Levenburg, S. & Langer, R. Nanolitre-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotechnol. 22, 863–866 (2004).

    CAS  Google Scholar 

  49. Mei, Y. et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature Mater. 9, 768–778 (2010).

    CAS  Google Scholar 

  50. Saha, K. et al. Surface-engineered substrates for improved pluripotent stem cell culture under fully defined conditions. Proc. Natl Acad. Sci. USA 108, 18714–18719 (2011).

    CAS  Google Scholar 

  51. Zhang, R. et al. A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nature Commun. 4, 1335–1345 (2013).

    Google Scholar 

  52. Meng, Y. et al. Characterization of integrin engagement during defined human embryonic stem cell culture. FASEB J. 24, 1056–1065 (2010).

    CAS  Google Scholar 

  53. Harb, N., Archer, T. & Sato, N. The Rho-ROCK-Myosin axis determines cell-cell integrity of self-renewing pluripotent stem cells. PLoS ONE 3, e3001 (2008).

    Google Scholar 

  54. Rowland, T. J. et al. Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cells Dev. 19, 1231–1240 (2010).

    CAS  Google Scholar 

  55. Prowse, A. B. J., Chong, C., Gray, P. P. & Munro, T. P. Stem cell integrins: implications for ex-vivo culture and cellular therapies. Stem Cell Res. 6, 1–12 (2011).

    CAS  Google Scholar 

  56. Li, L., Bennett, S. A. L. & Wang, L. Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adh. Migr. 6, 59–70 (2012).

    Google Scholar 

  57. Koenig, A. L., Gambillara, V. & Grainger, D. W. Correlating fibronectin adsorption with endothelial cell adhesion and signalling on polymer substrates. J. Biomed. Mater. Res. Part A 64, 20–37 (2003).

    Google Scholar 

  58. Weber, N., Bolikal, D., Bourke, S. L. & Kohn, J. Small changes in the polymer structure influence the adsorption behaviour of fibrinogen on polymer surfaces: validation of a new rapid screening technique. J. Biomed. Mater. Res. A 68, 496–503 (2004).

    Google Scholar 

  59. Ingber, D. E. The riddle of morphogenesis: a question of solution chemistry or molecular cell engineering? Cell 75, 1249–1252 (1993).

    CAS  Google Scholar 

  60. Wan, L. Q. et al. Geometric control of human stem cell morphology and differentiation. Integr. Biol. 2, 346–353 (2010).

    Google Scholar 

  61. Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature Methods 7, 733–736 (2010).

    CAS  Google Scholar 

  62. Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nature Mater. 27, 642–649 (2012).

    Google Scholar 

  63. Musah, S. et al. Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS Nano 6, 10168–10177 (2012).

    CAS  Google Scholar 

  64. Cranford, S. W., de Boer, J., van Blitterswijk, C. & Buehler, M. J. Materiomics: An -omics approach to biomaterials research. Adv. Mater. 25, 802–824 (2013).

    CAS  Google Scholar 

  65. Brocchini, S., James, K., Tangpasuthadol, V. & Kohn, J. Structure–property correlations in a combinatorial library of biodegradable materials. J. Biomed. Mater. Res. 42, 67–75 (1998).

    Google Scholar 

  66. Epa, V. C. et al. Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces. J. Mater. Chem. 22, 20902–20906 (2012).

    CAS  Google Scholar 

  67. Chilkoti, A., Schmierer, A. E., Pérez-Luna, V. H. & Ratner, B. D. Investigating the relationship between surface chemistry and endothelial cell growth: partial least-squares regression of the static secondary ion mass spectra of oxygen-containing plasma-deposited films. Anal. Chem. 67, 2883–2891 (1995).

    CAS  Google Scholar 

  68. Urquhart, A. J. et al. High throughput surface characterisation of a combinatorial material library. Adv. Mater. 19, 2486–2491 (2007).

    CAS  Google Scholar 

  69. Urquhart, A. J. et al. TOF-SIMS analysis of a 576 micropatterned copolymer array to reveal surface chemical moieties that control wettability. Anal. Chem. 80, 135–142 (2008).

    CAS  Google Scholar 

  70. Martin, S. Lattice enumeration for inverse molecular design using the signature descriptor. J. Chem. Inf. Model. 52, 1787–1797 (2012).

    CAS  Google Scholar 

  71. Dixon, J. E. et al. Composite hydrogels that switch human pluripotent stem cells from self-renewal to differentiation. Proc. Natl Acad. Sci. USA 111, 5580–5585 (2014).

    CAS  Google Scholar 

  72. Maier, W. F., Stöwe, K. & Sieg, S. Combinatorial and high-throughput materials science. Angew. Chem. Int. Ed. 46, 6016–6067 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

C.D. is supported by EPSRC, British Heart Foundation, Heart Research UK and National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). M.R.A. gratefully acknowledges EPSRC (grant number EP/H045384/1) and the Wellcome Trust for funding, and The Royal Society for the provision of his Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chris Denning or Morgan R. Alexander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Celiz, A., Smith, J., Langer, R. et al. Materials for stem cell factories of the future. Nature Mater 13, 570–579 (2014). https://doi.org/10.1038/nmat3972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3972

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing