Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids


To progress from the laboratory to commercial applications, it will be necessary to develop industrially scalable methods to produce large quantities of defect-free graphene. Here we show that high-shear mixing of graphite in suitable stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets. X-ray photoelectron spectroscopy and Raman spectroscopy show the exfoliated flakes to be unoxidized and free of basal-plane defects. We have developed a simple model that shows exfoliation to occur once the local shear rate exceeds 104 s−1. By fully characterizing the scaling behaviour of the graphene production rate, we show that exfoliation can be achieved in liquid volumes from hundreds of millilitres up to hundreds of litres and beyond. The graphene produced by this method performs well in applications from composites to conductive coatings. This method can be applied to exfoliate BN, MoS2 and a range of other layered crystals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Production of graphene by shear mixing.
Figure 2: Characterization of the exfoliation mechanism.
Figure 3: Scaling of graphene production using a shear mixer.
Figure 4: Scaling of graphene production using a shear mixer.
Figure 5: Applications of mixer-exfoliated graphene.


  1. 1

    Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Kavan, L., Yum, J. H. & Gratzel, M. Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5, 165–172 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Pumera, M. Electrochemistry of graphene: New horizons for sensing and energy storage. Chem. Rec. 9, 211–223 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Keeley, G. P. et al. Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J. Mater. Chem. 20, 7864–7869 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Nicolosi, N., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  Google Scholar 

  6. 6

    Park, S. & Ruoff, R. S. Chemical methods for the production of graphenes. Nature Nanotech. 4, 217–224 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Allen, M. J., Tung, V. C. & Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 110, 132–145 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Zhu, Y. W. et al. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Lotya, M. et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Smith, R. J. et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 3944–3948 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Wengeler, R. & Nirschl, H. Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates. J. Colloid Interface Sci. 306, 262–273 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Murphy, D. W. & Hull, G. W. Monodispersed tantalum disulfide and adsorption complexes with cations. J. Chem. Phys. 62, 973–978 (1975).

    CAS  Article  Google Scholar 

  16. 16

    Walker, G. F. & Garrett, W. G. Chemical exfoliation of vermiculite and production of colloidal dispersions. Science 156, 385–387 (1967).

    CAS  Article  Google Scholar 

  17. 17

    Bunnell, L. R. Method for producing thin graphite flakes with large aspect ratios. USA patent (1993)

  18. 18

    Guo, J. Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites. US patent 20,080,258,359 A1 (2012)

  19. 19

    Holland, F. A. & Chapman, F. S Liquid Mixing and Processing in Stirred Tanks (Reinhold, 1966).

    Google Scholar 

  20. 20

    Khan, U. et al. Solvent-exfoliated graphene at extremely high concentration. Langmuir 27, 9077–9082 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Chen, X. J., Dobson, J. F. & Raston, C. L. Vortex fluidic exfoliation of graphite and boron nitride. Chem. Commun. 48, 3703–3705 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Khan, U., O’Neill, A., Lotya, M., De, S. & Coleman, J. N. High-concentration solvent exfoliation of graphene. Small 6, 864–871 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Eckmann, A. et al. Probing the nature of defects in graphene by raman spectroscopy. Nano Lett. 12, 3925–3930 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Kresta, S. M. & Brodkey, R. S. in Handbook of Industrial Mixing: Science and Practice (eds Paul, E. L., Atiemo-Obeng, V. A. & Kresta, S. M.) 19–87 (John Wiley, 2004).

    Google Scholar 

  25. 25

    Alhassan, S. M., Qutubuddin, S. & Schiraldi, D. A. Graphene arrested in laponite-water colloidal glass. Langmuir 28, 4009–4015 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Utomo, A. T., Baker, M. & Pacek, A. W. Flow pattern, periodicity and energy dissipation in a batch rotor-stator mixer. Chem. Eng. Res. Des. 86, 1397–1409 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Gollub, J. P. & Swinney, H. L. Onset of turbulencein a rotating fluid. Phys. Rev. Lett. 35, 927–930 (1975).

    Article  Google Scholar 

  28. 28

    Hall, S., Cooke, M., Pacek, A. W., Kowalski, A. J. & Rothman, D. Scaling up of Silverson rotor-stator mixers. Can. J. Chem. Eng. 89, 1040–1050 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Leng, D. E. & Calabrese, R. V. in Handbook of Industrial Mixing: Science and Practice (eds Paul, E. L., Atiemo-Obeng, V. A. & Kresta, S. M.) 639–753 (John Wiley, 2004).

    Google Scholar 

  30. 30

    Doran, P. M. Bioprocess Engineering Principles (Academic, 1995).

    Google Scholar 

  31. 31

    Ozcan-Taskin, N. G., Padron, G. & Voelkel, A. Effect of particle type on the mechanisms of break up of nanoscale particle clusters. Chem. Eng. Res. Des. 87, 468–473 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Pohl, M. & Schubert, H. Proceedings of the International Congress for Particle Technology 1–4 (Partec, 2004).

    Google Scholar 

  33. 33

    De, S. & Coleman, J. N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4, 2713–2720 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Lin, J. et al. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2013).

    Article  Google Scholar 

  35. 35

    Sorel, S., Khan, U. & Coleman, J. N. Flexible, transparent dielectric capacitors with nanostructured electrodes. Appl. Phys. Lett. 101, 103106 (2012).

    Article  Google Scholar 

  36. 36

    Miller, J. R., Outlaw, R. A. & Holloway, B. C. Graphene double-layer capacitor with ac line-filtering performance. Science 329, 1637–1639 (2010).

    CAS  Article  Google Scholar 

  37. 37

    Li, X. et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Rep. 2, 870 (2012).

    Article  Google Scholar 

Download references


We thank Science Foundation Ireland (11/PI/1087), the European Research Council (SEMANTICS and 2DNanoCaps), the Graphene Flagship Project (no. 604391) and Thomas Swan for financial support. We acknowledge SuperSTEM and the CRANN Advanced Microscopy Laboratory for technical support.

Author information




K.R.P., E.V. and P.P. performed the shear mixing and other experiments. A.O’N., M.L., P.M., R.J.S., H.P., E.L., J.C., S.E.O’B., B.M.S., E.Mc.G., T.J.P. and V.N. performed electron microscopy characterization and analysis. C.D. and A.C. performed XPS characterization and analysis. U.K., C. Boland, O.M.I., P.K., T.H. and I.A. performed applications measurements. C. Backes, N.Mc.E. and G.S.D. performed Raman and AFM analysis. S.B. and M.M. performed rheological characterization and analysis. J.N.C. designed the experiments, derived the models and wrote the paper.

Corresponding author

Correspondence to Jonathan N. Coleman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4245 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paton, K., Varrla, E., Backes, C. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Mater 13, 624–630 (2014).

Download citation

Further reading