Materials as stem cell regulators

An Erratum to this article was published on 20 June 2014

This article has been updated

Abstract

The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Inherent material properties.
Figure 2: Stiffness, nanotopography and chemical functionality influence the behaviour of human mesenchymal stem cells.
Figure 3: Cell–material interactions established at the outset but evolving during the course of cell culture regulate the behaviour of mesenchymal stem cells (MSCs).
Figure 4: 'Give and take' at the stem cell/material interface.
Figure 5: Autocatalytic processes in stem cell culture.
Figure 6: Materials-based signalling mechanisms within cells.

Change history

  • 22 May 2014

    In the version of this Review Article originally published, Fig. 6 was incorrect; it has now been replaced by the correct figure in the online versions of the Review Article.

  • 20 June 2014

    Nature Materials 13, 547–557 (2014); published online 21 May 2014; corrected after print 22 May 2014. In the version of this Review Article originally published, Fig. 6 was incorrect; it should have been as shown below. This error has now been corrected in the online versions of the Review Article.

References

  1. 1

    Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Google Scholar 

  2. 2

    Lee, J., Abdeen, A. A., Zhang, D. & Kilian, K. A. Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34, 8140–8148 (2013).

    CAS  Google Scholar 

  3. 3

    Dalby, M. J. et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Mater. 6, 997–1003 (2007).

    CAS  Google Scholar 

  4. 4

    McMurray, R. J. et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nature Mater. 10, 637–644 (2011).

    CAS  Google Scholar 

  5. 5

    Yim, E. K., Darling, E. M., Kulangara, K., Guilak, F. & Leong, K. W. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31, 1299–1306 (2010).

    CAS  Google Scholar 

  6. 6

    Benoit, D. S., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater. 7, 816–823 (2008).

    CAS  Google Scholar 

  7. 7

    Saha, K. et al. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proc. Natl Acad. Sci. USA 108, 18714–18719 (2011).

    CAS  Google Scholar 

  8. 8

    McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    CAS  Google Scholar 

  9. 9

    Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA 107, 4872–4877 (2010).

    CAS  Google Scholar 

  10. 10

    Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater. 9, 518–526 (2010).

    CAS  Google Scholar 

  11. 11

    Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nature Mater. 11, 642–649 (2012).

    CAS  Google Scholar 

  12. 12

    Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature Mater. 12, 458–465 (2013).

    CAS  Google Scholar 

  13. 13

    Deng, Y. et al. Long-term self-renewal of human pluripotent stem cells on peptide-decorated poly(OEGMA-co-HEMA) brushes under fully defined conditions. Acta Biomater. 9, 8840–8850 (2013).

    CAS  Google Scholar 

  14. 14

    Nandivada, H. et al. Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nature Protoc. 6, 1037–1043 (2011).

    CAS  Google Scholar 

  15. 15

    Melkoumian, Z. et al. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnol. 28, 606–610 (2010).

    CAS  Google Scholar 

  16. 16

    Barradas, A. M. et al. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials 33, 3205–3215 (2012).

    CAS  Google Scholar 

  17. 17

    Choi, S., Yu, X., Jongpaiboonkit, L., Hollister, S. J. & Murphy, W. L. Inorganic coatings for optimized non-viral transfection of stem cells. Sci. Rep. 3, 1567 (2013).

    Google Scholar 

  18. 18

    Yang, F. et al. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells 29, 981–991 (2011).

    CAS  Google Scholar 

  19. 19

    Zhang, W. et al. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials 34, 3184–3195 (2013).

    CAS  Google Scholar 

  20. 20

    Bratt-Leal, A. M., Carpenedo, R. L., Ungrin, M. D., Zandstra, P. W. & McDevitt, T. C. Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation. Biomaterials 32, 48–56 (2011).

    CAS  Google Scholar 

  21. 21

    Bot, P. T., Hoefer, I. E., Piek, J. J. & Pasterkamp, G. Hyaluronic acid: targeting immune modulatory components of the extracellular matrix in atherosclerosis. Curr. Med. Chem. 15, 786–791 (2008).

    CAS  Google Scholar 

  22. 22

    Slevin, M. et al. Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biol. 26, 58–68 (2007).

    CAS  Google Scholar 

  23. 23

    O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    CAS  Google Scholar 

  24. 24

    Dixelius, J. et al. Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis. Blood 95, 3403–3411 (2000).

    CAS  Google Scholar 

  25. 25

    Sudhakar, A. et al. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by αvβ3 and α5β1 integrins. Proc. Natl Acad. Sci. USA 100, 4766–4771 (2003).

    CAS  Google Scholar 

  26. 26

    Lampe, K. J., Bjugstad, K. B. & Mahoney, M. J. Impact of degradable macromer content in a poly(ethylene glycol) hydrogel on neural cell metabolic activity, redox state, proliferation, and differentiation. Tissue Eng. A 16, 1857–1866 (2010).

    CAS  Google Scholar 

  27. 27

    Lampe, K. J., Namba, R. M., Silverman, T. R., Bjugstad, K. B. & Mahoney, M. J. Impact of lactic acid on cell proliferation and free radical-induced cell death in monolayer cultures of neural precursor cells. Biotechnol. Bioeng. 103, 1214–1223 (2009).

    CAS  Google Scholar 

  28. 28

    Yang, P. J., Levenston, M. E. & Temenoff, J. S. Modulation of mesenchymal stem cell shape in enzyme-sensitive hydrogels is decoupled from upregulation of fibroblast markers under cyclic tension. Tissue Eng. A 18, 2365–2375 (2012).

    CAS  Google Scholar 

  29. 29

    Tsimbouri, P. et al. Nanotopographical effects on mesenchymal stem cell morphology and phenotype. J. Cell. Biochem. 115, 380–390 (2014).

    CAS  Google Scholar 

  30. 30

    Kulangara, K., Yang, Y., Yang, J. & Leong, K. W. Nanotopography as modulator of human mesenchymal stem cell function. Biomaterials 33, 4998–5003 (2012).

    CAS  Google Scholar 

  31. 31

    Guvendiren, M. & Burdick, J. A. Stem cell response to spatially and temporally displayed and reversible surface topography. Adv. Healthcare Mater. 2, 155–164 (2013).

    CAS  Google Scholar 

  32. 32

    Ji, L., LaPointe, V. L., Evans, N. D. & Stevens, M. M. Changes in embryonic stem cell colony morphology and early differentiation markers driven by colloidal crystal topographical cues. Eur. Cells Mater. 23, 135–146 (2012).

    CAS  Google Scholar 

  33. 33

    Chan, L. Y., Birch, W. R., Yim, E. K. & Choo, A. B. Temporal application of topography to increase the rate of neural differentiation from human pluripotent stem cells. Biomaterials 34, 382–392 (2013).

    CAS  Google Scholar 

  34. 34

    Unadkat, H. V. et al. An algorithm-based topographical biomaterials library to instruct cell fate. Proc. Natl Acad. Sci. USA 108, 16565–16570 (2011).

    CAS  Google Scholar 

  35. 35

    Kim, J. & Ma, T. Autocrine fibroblast growth factor 2-mediated interactions between human mesenchymal stem cells and the extracellular matrix under varying oxygen tension. J. Cell Biochem. 114, 716–727 (2013).

    CAS  Google Scholar 

  36. 36

    Lee, J. S., Lee, J. S., Wagoner-Johnson, A. & Murphy, W. L. Modular peptide growth factors for substrate-mediated stem cell differentiation. Angew. Chem. Int. Ed. 48, 6266–6269 (2009).

    CAS  Google Scholar 

  37. 37

    Huang, Z., Nelson, E. R., Smith, R. L. & Goodman, S. B. The sequential expression profiles of growth factors from osteoprogenitors [correction of osteroprogenitors] to osteoblasts in vitro. Tissue Eng. 13, 2311–2320 (2007).

    CAS  Google Scholar 

  38. 38

    Lee, C. S., Watkins, E., Burnsed, O. A., Schwartz, Z. & Boyan, B. D. Tailoring adipose stem cell trophic factor production with differentiation medium components to regenerate chondral defects. Tissue Eng. A 19, 1451–1464 (2013).

    CAS  Google Scholar 

  39. 39

    Kim, B. S., Kang, K. S. & Kang, S. K. Soluble factors from ASCs effectively direct control of chondrogenic fate. Cell Proliferat. 43, 249–261 (2010).

    CAS  Google Scholar 

  40. 40

    Hudalla, G. A., Koepsel, J. T. & Murphy, W. L. Surfaces that sequester serum-borne heparin amplify growth factor activity. Adv. Mater. 23, 5415–5418 (2011).

    CAS  Google Scholar 

  41. 41

    Hudalla, G. A., Kouris, N. A., Koepsel, J. T., Ogle, B. M. & Murphy, W. L. Harnessing endogenous growth factor activity modulates stem cell behavior. Integr. Biol. 3, 832–842 (2011).

    CAS  Google Scholar 

  42. 42

    Impellitteri, N. A., Toepke, M. W., Lan Levengood, S. K. & Murphy, W. L. Specific VEGF sequestering and release using peptide-functionalized hydrogel microspheres. Biomaterials 33, 3475–3484 (2012).

    CAS  Google Scholar 

  43. 43

    Chang, C. W. et al. Engineering cell-material interfaces for long-term expansion of human pluripotent stem cells. Biomaterials 34, 912–921 (2013).

    CAS  Google Scholar 

  44. 44

    Mei, Y. et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature Mater. 9, 768–778 (2010).

    CAS  Google Scholar 

  45. 45

    Phadke, A., Shih, Y. R. & Varghese, S. Mineralized synthetic matrices as an instructive microenvironment for osteogenic differentiation of human mesenchymal stem cells. Macromol. Biosci. 12, 1022–1032 (2012).

    CAS  Google Scholar 

  46. 46

    Gandavarapu, N. R., Mariner, P. D., Schwartz, M. P. & Anseth, K. S. Extracellular matrix protein adsorption to phosphate-functionalized gels from serum promotes osteogenic differentiation of human mesenchymal stem cells. Acta Biomater. 9, 4525–4534 (2013).

    CAS  Google Scholar 

  47. 47

    Crapnell, K. et al. Growth, differentiation capacity, and function of mesenchymal stem cells expanded in serum-free medium developed via combinatorial screening. Exp. Cell Res. 319, 1409–1418 (2013).

    CAS  Google Scholar 

  48. 48

    Martino, M. M. & Hubbell, J. A. The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB J. 24, 4711–4721 (2010).

    CAS  Google Scholar 

  49. 49

    Burdick, J. A. & Murphy, W. L. Moving from static to dynamic complexity in hydrogel design. Nature Commun. 3, 1269 (2012).

    Google Scholar 

  50. 50

    Tibbitt, M. W. & Anseth, K. S. Dynamic microenvironments: the fourth dimension. Sci. Trans. Med. 4, 160ps124 (2012).

    Google Scholar 

  51. 51

    Collier, J. H. & Mrksich, M. Engineering a biospecific communication pathway between cells and electrodes. Proc. Natl Acad. Sci. USA 103, 2021–2025 (2006).

    CAS  Google Scholar 

  52. 52

    Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    CAS  Google Scholar 

  53. 53

    Guvendiren, M. & Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nature Commun. 3, 792 (2012).

    Google Scholar 

  54. 54

    Young, J. L. & Engler, A. J. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32, 1002–1009 (2011).

    CAS  Google Scholar 

  55. 55

    Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nature Mater. 13, 645–652 (2014).

    CAS  Google Scholar 

  56. 56

    Holle, A. W. & Engler, A. J. More than a feeling: discovering, understanding, and influencing mechanosensing pathways. Curr. Opin. Biotechnol. 22, 648–654 (2011).

    CAS  Google Scholar 

  57. 57

    Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature Methods 7, 733–736 (2010).

    CAS  Google Scholar 

  58. 58

    Oh, S. et al. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl Acad. Sci. USA 106, 2130–2135 (2009).

    CAS  Google Scholar 

  59. 59

    Guilak, F. et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009).

    CAS  Google Scholar 

  60. 60

    Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS  Google Scholar 

  61. 61

    Tang, Y. et al. MT1-MMP-dependent control of skeletal stem cell commitment via a β1-integrin/YAP/TAZ signaling axis. Dev. Cell 25, 402–416 (2013).

    CAS  Google Scholar 

  62. 62

    Rowlands, A. S., George, P. A. & Cooper-White, J. J. Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am. J. Physiol. Cell Physiol. 295, C1037–C1044 (2008).

    CAS  Google Scholar 

  63. 63

    Peyton, S. R. & Putnam, A. J. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell Physiol. 204, 198–209 (2005).

    CAS  Google Scholar 

  64. 64

    MacKay, J. L., Keung, A. J. & Kumar, S. A genetic strategy for the dynamic and graded control of cell mechanics, motility, and matrix remodeling. Biophys. J. 102, 434–442 (2012).

    CAS  Google Scholar 

  65. 65

    Chowdhury, F. et al. Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS ONE 5, e15655 (2010).

    CAS  Google Scholar 

  66. 66

    Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    CAS  Google Scholar 

  67. 67

    Del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).

    CAS  Google Scholar 

  68. 68

    Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    CAS  Google Scholar 

  69. 69

    Holle, A. W. et al. In situ mechanotransduction via vinculin regulates stem cell differentiation. Stem Cells 31, 2467–2477 (2013).

    CAS  Google Scholar 

  70. 70

    Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006).

    CAS  Google Scholar 

  71. 71

    Pasapera, A. M., Schneider, I. C., Rericha, E., Schlaepfer, D. D. & Waterman, C. M. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188, 877–890 (2010).

    CAS  Google Scholar 

  72. 72

    Tornillo, G. et al. p130Cas alters the differentiation potential of mammary luminal progenitors by deregulating c-Kit activity. Stem Cells 31, 1422–1433 (2013).

    CAS  Google Scholar 

  73. 73

    Shih, Y. R., Tseng, K. F., Lai, H. Y., Lin, C. H. & Lee, O. K. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J. Bone Miner. Res. 26, 730–738 (2010).

    Google Scholar 

  74. 74

    Teo, B. K. et al. Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS Nano 7, 4785–4798 (2013).

    CAS  Google Scholar 

  75. 75

    Jiang, G., Huang, A. H., Cai, Y., Tanase, M. & Sheetz, M. P. Rigidity sensing at the leading edge through αvβ3 integrins and RPTPα. Biophys. J. 90, 1804–1809 (2006).

    CAS  Google Scholar 

  76. 76

    Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nature Rev. Mol. Cell Biol. 10, 21–33 (2009).

    CAS  Google Scholar 

  77. 77

    Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    CAS  Google Scholar 

  78. 78

    Viswanathan, P., Chirasatitsin, S., Ngamkham, K., Engler, A. J. & Battaglia, G. Cell instructive microporous scaffolds through interface engineering. J. Am. Chem. Soc. 134, 20103–20109 (2012).

    CAS  Google Scholar 

  79. 79

    Li, Y. et al. Biophysical regulation of histone acetylation in mesenchymal stem cells. Biophys. J. 100, 1902–1909 (2011).

    CAS  Google Scholar 

  80. 80

    Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nature Rev. Mol. Cell Biol. 10, 63–73 (2009).

    CAS  Google Scholar 

  81. 81

    Rajapakse, I. et al. The emergence of lineage-specific chromosomal topologies from coordinate gene regulation. Proc. Natl Acad. Sci. USA 106, 6679–6684 (2009).

    CAS  Google Scholar 

  82. 82

    Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J. & Discher, D. E. Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl Acad. Sci. USA 104, 15619–15624 (2007).

    CAS  Google Scholar 

  83. 83

    Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Google Scholar 

  84. 84

    Jacot, J. G., McCulloch, A. D. & Omens, J. H. Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys. J. 95, 3479–3487 (2008).

    CAS  Google Scholar 

  85. 85

    Markin, V. S. & Martinac, B. Mechanosensitive ion channels as reporters of bilayer expansion. A theoretical model. Biophys. J. 60, 1120–1127 (1991).

    CAS  Google Scholar 

  86. 86

    Markin, V. S. & Sachs, F. Thermodynamics of mechanosensitivity. Phys. Biol. 1, 110–124 (2004).

    CAS  Google Scholar 

  87. 87

    Liu, M., Xu, J., Tanswell, A. K. & Post, M. Inhibition of mechanical strain-induced fetal rat lung cell proliferation by gadolinium, a stretch-activated channel blocker. J. Cell Physiol. 161, 501–507 (1994).

    CAS  Google Scholar 

  88. 88

    Hoyer, J., Distler, A., Haase, W. & Gogelein, H. Ca2+ influx through stretch-activated cation channels activates maxi K+ channels in porcine endocardial endothelium. Proc. Natl Acad. Sci. USA 91, 2367–2371 (1994).

    CAS  Google Scholar 

  89. 89

    Geiger, B. & Bershadsky, A. Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell 110, 139–142 (2002).

    CAS  Google Scholar 

  90. 90

    Charras, G. T. & Horton, M. A. Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys. J. 82, 2970–2981 (2002).

    CAS  Google Scholar 

  91. 91

    Follonier, L., Schaub, S., Meister, J. J. & Hinz, B. Myofibroblast communication is controlled by intercellular mechanical coupling. J. Cell Sci. 121, 3305–3316 (2008).

    CAS  Google Scholar 

  92. 92

    Kobayashi, T. & Sokabe, M. Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions. Curr. Opin. Cell Biol. 22, 669–676 (2010).

    CAS  Google Scholar 

  93. 93

    Dedman, A. et al. The mechano-gated K(2P) channel TREK-1. Eur. Biophys. J. 38, 293–303 (2009).

    CAS  Google Scholar 

  94. 94

    Hara, M. et al. Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. Am. J. Physiol. Cell Physiol. 302, C1741–C1750 (2012).

    CAS  Google Scholar 

  95. 95

    Kanczler, J. M. et al. Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng. A 16, 3241–3250 (2010).

    CAS  Google Scholar 

  96. 96

    McMahon, L. A., Campbell, V. A. & Prendergast, P. J. Involvement of stretch-activated ion channels in strain-regulated glycosaminoglycan synthesis in mesenchymal stem cell-seeded 3D scaffolds. J. Biomech. 41, 2055–2059 (2008).

    Google Scholar 

  97. 97

    Vincent, L. G., Choi, Y. S., Alonso-Latorre, B., del Alamo, J. C. & Engler, A. J. Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol. J. 8, 472–484 (2013).

    CAS  Google Scholar 

  98. 98

    Choi, S. Y. & Murphy, W. L. The effect of mineral coating morphology on mesenchymal stem cell attachment and expansion. J. Mater. Chem. 22, 25288–25295 (2012).

    CAS  Google Scholar 

  99. 99

    Gobaa, S. et al. Artificial niche microarrays for probing single stem cell fate in high throughput. Nature Methods 8, 949–955 (2011).

    CAS  Google Scholar 

  100. 100

    Jongpaiboonkit, L., King, W. J. & Murphy, W. L. Screening for 3D environments that support human mesenchymal stem cell viability using hydrogel arrays. Tissue Eng. A 15, 343–353 (2009).

    CAS  Google Scholar 

  101. 101

    Yang, J. et al. Polymer surface functionalities that control human embryoid body cell adhesion revealed by high throughput surface characterization of combinatorial material microarrays. Biomaterials 31, 8827–8838 (2010).

    CAS  Google Scholar 

  102. 102

    Shih, Y. V. et al. Calcium-phosphate bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc. Natl Acad. Sci. USA 111, 990–995 (2014).

    CAS  Google Scholar 

  103. 103

    Chen, S. et al. Self-renewal of embryonic stem cells by a small molecule. Proc. Natl Acad. Sci. USA 103, 17266–17271 (2006).

    CAS  Google Scholar 

  104. 104

    Treiser, M. D. et al. Cytoskeleton-based forecasting of stem cell lineage fates. Proc. Natl Acad. Sci. USA 107, 610–615 (2010).

    CAS  Google Scholar 

  105. 105

    Yang, M. T., Fu, J., Wang, Y. K., Desai, R. A. & Chen, C. S. Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nature Protoc. 6, 187–213 (2011).

    CAS  Google Scholar 

  106. 106

    Healy, K. E., McDevitt, T. C., Murphy, W. L. & Nerem, R. M. Engineering the emergence of stem cell therapeutics. Sci. Trans. Med. 5, 207ed17 (2013).

    Google Scholar 

  107. 107

    Kinney, M. A. & McDevitt, T. C. Emerging strategies for spatiotemporal control of stem cell fate and morphogenesis. Trends Biotechnol. 31, 78–84 (2013).

    CAS  Google Scholar 

  108. 108

    Lee, J. et al. Implantable microenvironments to attract hematopoietic stem/cancer cells. Proc. Natl Acad. Sci. USA 109, 19638–19643 (2012).

    CAS  Google Scholar 

  109. 109

    Caplan, A. I. & Correa, D. The MSC: an injury drugstore. Cell Stem Cell 9, 11–15 (2011).

    CAS  Google Scholar 

  110. 110

    Flanagan, L. A., Ju, Y. E., Marg, B., Osterfield, M. & Janmey, P. A. Neurite branching on deformable substrates. Neuroreport 13, 2411–2415 (2002).

    Google Scholar 

  111. 111

    Garcia, A. J. & Reyes, C. D. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J. Dent. Res. 84, 407–413 (2005).

    CAS  Google Scholar 

  112. 112

    Musah, S. et al. Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS Nano 6, 10168–10177 (2012).

    CAS  Google Scholar 

  113. 113

    Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S. & Ko, F. K. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60, 613–621 (2002).

    CAS  Google Scholar 

  114. 114

    Kong, Y. P., Tu, C. H., Donovan, P. J. & Yee, A. F. Expression of Oct4 in human embryonic stem cells is dependent on nanotopographical configuration. Acta Biomater. 9, 6369–6380 (2013).

    CAS  Google Scholar 

  115. 115

    Watari, S. et al. Modulation of osteogenic differentiation in hMSCs cells by submicron topographically-patterned ridges and grooves. Biomaterials 33, 128–136 (2012).

    CAS  Google Scholar 

  116. 116

    Flemming, R. G., Murphy, C. J., Abrams, G. A., Goodman, S. L. & Nealey, P. F. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20, 573–588 (1999).

    CAS  Google Scholar 

  117. 117

    Jang, J. H., Castano, O. & Kim, H. W. Electrospun materials as potential platforms for bone tissue engineering. Adv. Drug Deliver. Rev. 61, 1065–1083 (2009).

    CAS  Google Scholar 

  118. 118

    Downing, T. L. et al. Biophysical regulation of epigenetic state and cell reprogramming. Nature Mater. 12, 1154–1162 (2013).

    CAS  Google Scholar 

  119. 119

    Huang, J. et al. Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett. 9, 1111–1116 (2009).

    CAS  Google Scholar 

  120. 120

    Yanez-Soto, B., Liliensiek, S. J., Gasiorowski, J. Z., Murphy, C. J. & Nealey, P. F. The influence of substrate topography on the migration of corneal epithelial wound borders. Biomaterials 34, 9244–9251 (2013).

    CAS  Google Scholar 

  121. 121

    Zonca, M. R. Jr, Yune, P. S., Heldt, C. L., Belfort, G. & Xie, Y. High-throughput screening of substrate chemistry for embryonic stem cell attachment, expansion, and maintaining pluripotency. Macromol. Biosci. 13, 177–190 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kinney for assistance with schematics, and acknowledge support from the National Institutes of Health (grants R01HL093282 to W.L.M., R01GM088291 and TR01AR062006 to T.C.M., and DP02OD006460 and R21HL106529 to A.J.E.) and the National Science Foundation (grants DMR1306482 and DMR1105591 to W.L.M.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to William L. Murphy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murphy, W., McDevitt, T. & Engler, A. Materials as stem cell regulators. Nature Mater 13, 547–557 (2014). https://doi.org/10.1038/nmat3937

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing