Light management for photovoltaics using high-index nanostructures

Abstract

High-performance photovoltaic cells use semiconductors to convert sunlight into clean electrical power, and transparent dielectrics or conductive oxides as antireflection coatings. A common feature of these materials is their high refractive index. Whereas high-index materials in a planar form tend to produce a strong, undesired reflection of sunlight, high-index nanostructures afford new ways to manipulate light at a subwavelength scale. For example, nanoscale wires, particles and voids support strong optical resonances that can enhance and effectively control light absorption and scattering processes. As such, they provide ideal building blocks for novel, broadband antireflection coatings, light-trapping layers and super-absorbing films. This Review discusses some of the recent developments in the design and implementation of such photonic elements in thin-film photovoltaic cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Absorption enhancement caused by the excitation of optical resonances in a thin PV cell.
Figure 2: Field distributions of the leaky optical modes supported by high-refractive-index nanostructures.
Figure 3: Light scattering, guiding and absorption resonances of high-index nanostructures.
Figure 4: Experimental realization of antireflection coatings with resonant, high-index nanostructures.
Figure 5: Large-area nanopatterning techniques.

References

  1. 1

    Green, M. A. The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovoltaics Res. Appl. 17, 183–189 (2009).

    Article  CAS  Google Scholar 

  2. 2

    Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 43). Prog. Photovoltaics Res. Appl. 22, 1–9 (2014).

    Article  Google Scholar 

  3. 3

    http://us.sunpowercorp.com/

  4. 4

    Gordon, I. et al. Three novel ways of making thin-film crystalline-silicon layers on glass for solar cell applications. Sol. Energy Mater. Sol. Cells 95, S2–S7 (2011).

    Article  CAS  Google Scholar 

  5. 5

    Yu, Z., Raman, A. & Fan, S. Nanophotonic light-trapping theory for solar cells. Appl. Phys. A 105, 329–339 (2011).

    Article  CAS  Google Scholar 

  6. 6

    Krc, J., Smole, F. & Topic, M. Potential of light trapping in microcrystalline silicon solar cells with textured substrates. Prog. Photovoltaics Res. Appl. 11, 429–436 (2003).

    Article  CAS  Google Scholar 

  7. 7

    Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 865–865 (2010).

    Article  CAS  Google Scholar 

  8. 8

    Ferry, V. E. et al. Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Appl. Phys. Lett. 95, 183503 (2009).

    Article  CAS  Google Scholar 

  9. 9

    Ding, I.-K. et al. Plasmonic dye-sensitized solar cells. Adv. Energy Mater. 1, 52–57 (2011).

    Article  CAS  Google Scholar 

  10. 10

    Yablonovitch, E. Statistical ray optics. J. Opt. Soc. Am. 72, 899–907 (1982).

    Article  Google Scholar 

  11. 11

    Campbell, P. & Green, M. A. Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62, 243–249 (1987).

    Article  Google Scholar 

  12. 12

    Yablonovitch, E. & Cody, G. D. Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Dev. 29, 300–305 (1982).

    Article  Google Scholar 

  13. 13

    Stuart, H. & Hall, D. Thermodynamic limit to light trapping in thin planar structures. J. Opt. Soc. Am. A 14, 3001–3008 (1997).

    Article  CAS  Google Scholar 

  14. 14

    Yu, Z., Raman, A. & Fan, S. Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl Acad. Sci. USA 107, 17491–17496 (2010).

    Article  Google Scholar 

  15. 15

    Yu, Z., Raman, A. & Fan, S. Fundamental limit of light trapping in grating structures. Opt. Express 401, 397–401 (2010).

    Google Scholar 

  16. 16

    Fan, S. & Joannopoulos, J. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 1–8 (2002).

    Google Scholar 

  17. 17

    Pala, R. A., White, J., Barnard, E., Liu, J. & Brongersma, M. L. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21, 3504–3509 (2009).

    Article  CAS  Google Scholar 

  18. 18

    Rockstuhl, C. & Lederer, F. Photon management by metallic nanodiscs in thin film solar cells. Appl. Phys. Lett. 94, 213102 (2009).

    Article  CAS  Google Scholar 

  19. 19

    Mokkapati, S., Beck, F. J., Polman, A. & Catchpole, K. R. Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Appl. Phys. Lett. 95, 053115 (2009).

    Article  CAS  Google Scholar 

  20. 20

    Vasudev, A., Schuller, J. & Brongersma, M. Nanophotonic light trapping with patterned transparent conductive oxides. Opt. Express 20, 586–595 (2012).

    Article  CAS  Google Scholar 

  21. 21

    Pala, R. A. et al. Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells. Nature Commun. 4, 2095 (2013).

    Article  CAS  Google Scholar 

  22. 22

    Campbell, P. & Green, M. A. The limiting efficiency of silicon solar cells under concentrated sunlight. IEEE Trans. Electron Dev. 33, 234–239 (1986).

    Article  Google Scholar 

  23. 23

    Yu, Z. & Fan, S. Angular constraint on light-trapping absorption enhancement in solar cells. Appl. Phys. Lett. 98, 011106 (2011).

    Article  CAS  Google Scholar 

  24. 24

    Rockstuhl, C., Lederer, F., Bittkau, K. & Carius, R. Light localization at randomly textured surfaces for solar-cell applications. Appl. Phys. Lett. 91, 171104 (2007).

    Article  CAS  Google Scholar 

  25. 25

    Ferry, V., Verschuuren, M. & Lare, M. Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si: H solar cells. Nano Lett. 11, 4239–4245 (2011).

    Article  CAS  Google Scholar 

  26. 26

    Atwater, J. H. et al. Microphotonic parabolic light directors fabricated by two-photon lithography. Appl. Phys. Lett. 99, 151113 (2011).

    Article  CAS  Google Scholar 

  27. 27

    Martins, E. R., Li, J., Liu, Y., Zhou, J. & Krauss, T. F. Engineering gratings for light trapping in photovoltaics: The supercell concept. Phys. Rev. B 86, 041404(R) (2012).

    Article  CAS  Google Scholar 

  28. 28

    Green, M. A. Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices. Prog. Photovoltaics Res. Appl. 19, 473–477 (2011).

    Article  CAS  Google Scholar 

  29. 29

    Callahan, D. M., Munday, J. N. & Atwater, H. A. Solar cell light trapping beyond the ray optic limit. Nano Lett. 12, 214–218 (2012).

    Article  CAS  Google Scholar 

  30. 30

    Munday, J. N., Callahan, D. M. & Atwater, H. A. Light trapping beyond the 4n2 limit in thin waveguides. Appl. Phys. Lett. 100, 121121 (2012).

    Article  CAS  Google Scholar 

  31. 31

    Schiff, E. A. Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals. J. Appl. Phys. 110, 104501 (2011).

    Article  CAS  Google Scholar 

  32. 32

    Yu, Z., Raman, A. & Fan, S. Thermodynamic upper bound on broadband light coupling with photonic structures. Phys. Rev. Lett. 109, 173901 (2012).

    Article  CAS  Google Scholar 

  33. 33

    Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE J. Photovoltaics 2, 303–311 (2012).

    Article  Google Scholar 

  34. 34

    Niv, A., Gharghi, M., Gladden, C., Miller, O. D. & Zhang, X. Near-field electromagnetic theory for thin solar cells. Phys. Rev. Lett. 109, 138701 (2012).

    Article  CAS  Google Scholar 

  35. 35

    Polman, A. & Atwater, H. A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Mater. 11, 174–177 (2012).

    Article  CAS  Google Scholar 

  36. 36

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  37. 37

    Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).

    Article  CAS  Google Scholar 

  38. 38

    Sandhu, S., Yu, Z. & Fan, S. Detailed balance analysis of nanophotonic solar cells. Opt. Express 21, 1209–1217 (2013).

    Article  CAS  Google Scholar 

  39. 39

    Bohren, F. & Huffman, D. Absorption and Scattering of Light by Small Particles (Wiley, 1983).

    Google Scholar 

  40. 40

    Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nature Mater. 8, 643–647 (2009).

    Article  CAS  Google Scholar 

  41. 41

    Wriedt, T. Generalized Multipole Techniques for Electromagnetic and Light Scattering (Elsevier, 1999).

    Google Scholar 

  42. 42

    Evlyukhin, A. B., Reinhardt, C. & Chichkov, B. N. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys. Rev. B 84, 235429 (2011).

    Article  CAS  Google Scholar 

  43. 43

    Cao, L., Fan, P., Barnard, E. S., Brown, A. M. & Brongersma, M. L. Tuning the color of silicon nanostructures. Nano Lett. 10, 2649–2654 (2010).

    Article  CAS  Google Scholar 

  44. 44

    Cao, L. et al. Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10, 439–445 (2010).

    Article  CAS  Google Scholar 

  45. 45

    Mann, S. A., Grote, R. R., Osgood, R. M. & Schuller, J. A. Dielectric particle and void resonators for thin film solar cell textures. Opt. Express 19, 25729–25740 (2011).

    Article  CAS  Google Scholar 

  46. 46

    Seo, K. et al. Multicolored vertical silicon nanowires. Nano Lett. 11, 1851–1856 (2011).

    Article  CAS  Google Scholar 

  47. 47

    Duan, X., Huang, Y., Agarwal, R. & Lieber, C. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

    Article  CAS  Google Scholar 

  48. 48

    Bohren, C. F. How can a particle absorb more than the light incident on it? Am. J. Phys. 51, 323–327 (1983).

    Article  CAS  Google Scholar 

  49. 49

    Schuller, J. A. & Brongersma, M. L. General properties of dielectric optical antennas. Opt. Express 17, 24084–24095 (2009).

    Article  Google Scholar 

  50. 50

    Evlyukhin, A. B. et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12, 3749–3755 (2012).

    Article  CAS  Google Scholar 

  51. 51

    Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J. & Luk'yanchuk, B. Magnetic light. Sci. Rep. 2, 492 (2012).

    Article  CAS  Google Scholar 

  52. 52

    Cao, L., Park, J.-S., Fan, P., Clemens, B. & Brongersma, M. L. Resonant germanium nanoantenna photodetectors. Nano Lett. 10, 1229–1233 (2010).

    Article  CAS  Google Scholar 

  53. 53

    Wallentin, J. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339, 1057–1060 (2013).

    Article  CAS  Google Scholar 

  54. 54

    Krogstrup, P., Jørgensen, H. & Heiss, M. Single-nanowire solar cells beyond the Shockley–Queisser limit. Nature Photon. 7, 306–310 (2013).

    Article  CAS  Google Scholar 

  55. 55

    Kim, S.-K. et al. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. Nano Lett. 12, 4971–4976 (2012).

    Article  CAS  Google Scholar 

  56. 56

    Kempa, T. J. et al. Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc. Natl Acad. Sci. USA 109, 1407–1412 (2012).

    Article  Google Scholar 

  57. 57

    Zhao, J. & Green, M. A. Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE Trans. Electron Dev. 38, 1925–1934 (1991).

    Article  CAS  Google Scholar 

  58. 58

    Zhao, J., Wang, A., Altermatt, P. & Green, M. A. Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss. Appl. Phys. Lett. 66, 3636–3638 (1995).

    Article  CAS  Google Scholar 

  59. 59

    Xi, J.-Q. et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nature Photon. 1, 176–179 (2007).

    Article  CAS  Google Scholar 

  60. 60

    Berhard, C. G. Structural and functional adaption in a visual system. Endeavor 26, 79–84 (1967).

    Google Scholar 

  61. 61

    Gittleman, J. I., Sichel, E. K., Lehmann, H. W. & Widmer, R. Textured silicon: A selective absorber for solar thermal conversion. Appl. Phys. Lett. 35, 742–744 (1979).

    Article  CAS  Google Scholar 

  62. 62

    Stephens, R. & Cody, G. Optical reflectance and transmission of a textured surface. Thin Solid Films 45, 19–29 (1977).

    Article  CAS  Google Scholar 

  63. 63

    Lalanne, P. & Morris, G. M. Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology 8, 53–56 (1997).

    Article  CAS  Google Scholar 

  64. 64

    Wassermann, E. F. et al. Fabrication of large scale periodic magnetic nanostructures. J. Appl. Phys. 83, 1753–1757 (1998).

    Article  CAS  Google Scholar 

  65. 65

    Koynov, S., Brandt, M. S. & Stutzmann, M. Black nonreflecting silicon surfaces for solar cells. Appl. Phys. Lett. 88, 203107 (2006).

    Article  CAS  Google Scholar 

  66. 66

    Huang, Y.-F. et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature Nanotech. 2, 770–774 (2007).

    Article  CAS  Google Scholar 

  67. 67

    Zhu, J. et al. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9, 279–282 (2009).

    Article  CAS  Google Scholar 

  68. 68

    Jeong, S. et al. Hybrid silicon nanocone–polymer solar cells. Nano Lett. 12, 2971–2976 (2012).

    Article  CAS  Google Scholar 

  69. 69

    Tsakalakos, L. et al. Silicon nanowire solar cells. Appl. Phys. Lett. 91, 233117 (2007).

    Article  CAS  Google Scholar 

  70. 70

    Fan, Z. et al. Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Lett. 10, 3823–3827 (2010).

    Article  CAS  Google Scholar 

  71. 71

    Diedenhofen, S. L. et al. Broadband and omnidirectional anti-reflection layer for III/V multi-junction solar cells. Sol. Energy Mater. Sol. Cells 101, 308–314 (2012).

    Article  CAS  Google Scholar 

  72. 72

    Yu, Y., Ferry, V. E., Alivisatos, A. P. & Cao, L. Dielectric core-shell optical antennas for strong solar absorption enhancement. Nano Lett. 12, 3674–3681 (2012).

    Article  CAS  Google Scholar 

  73. 73

    Spinelli, P., Macco, B., Verschuuren, M. A., Kessels, W. M. M. & Polman, A. Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination. Appl. Phys. Lett. 102, 233902 (2013).

    Article  CAS  Google Scholar 

  74. 74

    Oh, J., Yuan, H.-C. & Branz, H. M. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nature Nanotech. 7, 743–748 (2012).

    Article  CAS  Google Scholar 

  75. 75

    Kim, D. R., Lee, C. H., Rao, P. M., Cho, I. S. & Zheng, X. Hybrid Si microwire and planar solar cells: passivation and characterization. Nano Lett. 11, 2704–2708 (2011).

    Article  CAS  Google Scholar 

  76. 76

    Müller, J., Rech, B., Springer, J. & Vanecek, M. TCO and light trapping in silicon thin film solar cells. Sol. Energy 77, 917–930 (2004).

    Article  CAS  Google Scholar 

  77. 77

    Spinelli, P., Verschuuren, M. A. & Polman, A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nature Commun. 3, 692 (2012).

    Article  CAS  Google Scholar 

  78. 78

    Grandidier, J., Callahan, D. M., Munday, J. N. & Atwater, H. A. Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Adv. Mater. 23, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  79. 79

    Berger, O., Inns, D. & Aberle, A. G. Commercial white paint as back surface reflector for thin-film solar cells. Sol. Energy Mater. Sol. Cells 91, 1215–1221 (2007).

    Article  CAS  Google Scholar 

  80. 80

    Zeng, L. et al. Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector. Appl. Phys. Lett. 93, 221105 (2008).

    Article  CAS  Google Scholar 

  81. 81

    Krc, J., Zeman, M., Luxembourg, S. L. & Topic, M. Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells. Appl. Phys. Lett. 94, 153501 (2009).

    Article  CAS  Google Scholar 

  82. 82

    Bielawny, A., Rockstuhl, C., Lederer, F. & Wehrspohn, R. B. Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells. Opt. Express 17, 8439–8446 (2009).

    Article  CAS  Google Scholar 

  83. 83

    Üpping, J. et al. in Thin Film Solar Technology (eds Delahoy, A. E. & Eldada, L. A.) Proc. SPIE Vol. 7409, 74090J (SPIE, 2009).

    Google Scholar 

  84. 84

    Mavrokefalos, A., Han, S. E., Yerci, S., Branham, M. S. & Chen, G. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Nano Lett. 12, 2792–2796 (2012).

    Article  CAS  Google Scholar 

  85. 85

    Han, S. E. & Chen, G. Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 10, 1012–1015 (2010).

    Article  CAS  Google Scholar 

  86. 86

    Wang, K. X., Yu, Z., Liu, V., Cui, Y. & Fan, S. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 12, 1616–1619 (2012).

    Article  CAS  Google Scholar 

  87. 87

    Kayes, B. M., Atwater, H. A. & Lewis, N. S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005).

    Article  CAS  Google Scholar 

  88. 88

    Garnett, E. C. & Yang, P. Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130, 9224–9225 (2008).

    Article  CAS  Google Scholar 

  89. 89

    Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Mater. 9, 239–244 (2010).

    Article  CAS  Google Scholar 

  90. 90

    Garnett, E. C., Brongersma, M. L., Cui, Y. & McGehee, M. D. Nanowire solar cells. Annu. Rev. Mater. Res. 41, 269–295 (2011).

    Article  CAS  Google Scholar 

  91. 91

    Wangperawong, A. & Bent, S. F. Three-dimensional nanojunction device models for photovoltaics. Appl. Phys. Lett. 98, 233106 (2011).

    Article  CAS  Google Scholar 

  92. 92

    Deceglie, M. G., Ferry, V. E., Alivisatos, A. P. & Atwater, H. A. Design of nanostructured solar cells using coupled optical and electrical modeling. Nano Lett. 12, 2894–2900 (2012).

    Article  CAS  Google Scholar 

  93. 93

    Zhu, J., Hsu, C.-M., Yu, Z., Fan, S. & Cui, Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979–1984 (2010).

    Article  CAS  Google Scholar 

  94. 94

    Yao, Y. et al. Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nature Commun. 3, 664 (2012).

    Article  CAS  Google Scholar 

  95. 95

    Garnett, E. & Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010).

    Article  CAS  Google Scholar 

  96. 96

    Park, Y., Drouard, E. & Daif, O. El. Absorption enhancement using photonic crystals for silicon thin film solar cells. Opt. Express 17, 14312–14321 (2009).

    Article  CAS  Google Scholar 

  97. 97

    Han, S. E. & Chen, G. Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells. Nano Lett. 10, 4692–4696 (2010).

    Article  CAS  Google Scholar 

  98. 98

    Leung, S.-F. et al. Efficient photon capturing with ordered three-dimensional nanowell arrays. Nano Lett. 12, 3682–3689 (2012).

    Article  CAS  Google Scholar 

  99. 99

    Fan, Z. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nature Mater. 8, 648–653 (2009).

    Article  CAS  Google Scholar 

  100. 100

    Jiang, P. & McFarland, M. J. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J. Am. Chem. Soc. 126, 13778–13786 (2004).

    Article  CAS  Google Scholar 

  101. 101

    Huang, J., Kim, F., Tao, A. R., Connor, S. & Yang, P. Spontaneous formation of nanoparticle stripe patterns through dewetting. Nature Mater. 4, 896–900 (2005).

    Article  CAS  Google Scholar 

  102. 102

    Hsu, C.-M., Connor, S. T., Tang, M. X. & Cui, Y. Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching. Appl. Phys. Lett. 93, 133109 (2008).

    Article  CAS  Google Scholar 

  103. 103

    Jeong, S. et al. Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications. Nano Lett. 10, 2989–2994 (2010).

    Article  CAS  Google Scholar 

  104. 104

    Jeong, S., McDowell, M. & Cui, Y. Low-temperature self-catalytic growth of tin oxide nanocones over large areas. ACS Nano 5, 5800–5807 (2011).

    Article  CAS  Google Scholar 

  105. 105

    Chou, S., Krauss, P. & Renstrom, P. Nanoimprint lithography. J. Vac. Sci. Technol. B 14, 4129–4133 (1996).

    Article  CAS  Google Scholar 

  106. 106

    Verschuuren, M. A. Substrate Conformal Imprint Lithography for Nanophotonics PhD thesis, Utrecht Univ. (2010).

    Google Scholar 

  107. 107

    http://www.rolith.com/

  108. 108

    Kobrin, B., Barnard, E. S., Brongersma, M. L., Kwak, M. K. & Guo, L. J. in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V (eds Schoenfeld, W. V., Rumpf, R. C. & von Freymann, G.) Proc. SPIE Vol. 8249, 82490O (SPIE, 2012).

    Google Scholar 

  109. 109

    Xia, Y. & Whitesides, G. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge all of the students and postdocs in their groups who are actively involved with solar-energy research. We also greatly acknowledge support from the Center on Nanostructuring for Efficient Energy Conversion (CNEEC), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award DE-SC0001060, DOE grant DE-FG02-07ER46426, and the Global Climate and Energy Project at Stanford University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark L. Brongersma.

Ethics declarations

Competing interests

M.L.B. is a co-founder of the company Rolith, which is one of the companies discussed in this Review that produces large-area nanostructured coatings.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brongersma, M., Cui, Y. & Fan, S. Light management for photovoltaics using high-index nanostructures. Nature Mater 13, 451–460 (2014). https://doi.org/10.1038/nmat3921

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing