Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells

Abstract

Optical imaging for biological applications requires more sensitive tools. Near-infrared persistent luminescence nanoparticles enable highly sensitive in vivo optical detection and complete avoidance of tissue autofluorescence. However, the actual generation of persistent luminescence nanoparticles necessitates ex vivo activation before systemic administration, which prevents long-term imaging in living animals. Here, we introduce a new generation of optical nanoprobes, based on chromium-doped zinc gallate, whose persistent luminescence can be activated in vivo through living tissues using highly penetrating low-energy red photons. Surface functionalization of this photonic probe can be adjusted to favour multiple biomedical applications such as tumour targeting. Notably, we show that cells can endocytose these nanoparticles in vitro and that, after intravenous injection, we can track labelled cells in vivo and follow their biodistribution by a simple whole animal optical detection, opening new perspectives for cell therapy research and for a variety of diagnosis applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical properties of ZGO.
Figure 2: In vivo imaging with ZGO-based PLNPs.
Figure 3: In vivo comparison of negatively charged QDs and PLNPs.
Figure 4: The surface functionalization and characterization of red-excitable PLNPs.
Figure 5: The biodistribution of stealth ZGO–PEG nanoparticles in tumour-bearing mice (n = 3).
Figure 6: Cellular tracking with persistent luminescence after LED excitation.

Similar content being viewed by others

References

  1. Aitasalo, T. et al. Persistent luminescence phenomena in materials doped with rare earth ions. J. Solid State Chem. 171, 114–122 (2003).

    Article  CAS  Google Scholar 

  2. Matsuzawa, T., Aoki, Y., Takeuchi, N. & Murayama, Y. A new long phosphorescent phosphor with high brightness, SrAl2O4 : Eu2+, Dy3+. J. Electrochem. Soc. 143, 2670–2673 (1996).

    Article  CAS  Google Scholar 

  3. le Masne de Chermont, Q. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl Acad. Sci. USA 104, 9266–9271 (2007).

    Article  CAS  Google Scholar 

  4. Maldiney, T. et al. Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano 5, 854–862 (2011).

    Article  CAS  Google Scholar 

  5. Maldiney, T. et al. In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles. Opt. Mat. Express 2, 11810–11815 (2012).

    Article  Google Scholar 

  6. Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).

    Article  CAS  Google Scholar 

  7. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005).

    Article  CAS  Google Scholar 

  8. Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    Article  CAS  Google Scholar 

  9. Richard, C. et al. Persistent luminescence nanoparticles for bioimaging. Adv. Intell. Soft Comput. 120, 37–53 (2012).

    Article  Google Scholar 

  10. Wu, B. Y., Wang, H. F., Chen, J. T. & Yan, X. P. Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J. Am. Chem. Soc. 133, 686–688 (2011).

    Article  CAS  Google Scholar 

  11. Maldiney, T. et al. Synthesis and functionalization of persistent luminescence nanoparticles with small molecules and evaluation of their targeting ability. Int. J. Pharm. 423, 102–107 (2012).

    Article  CAS  Google Scholar 

  12. Maldiney, T. et al. In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles. Bioconjugate Chem. 23, 472–478 (2012).

    Article  CAS  Google Scholar 

  13. Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumours. Nature Rev. Clin. Oncol. 7, 653–664 (2010).

    Article  CAS  Google Scholar 

  14. Danhier, F., Feron, O. & Préat, V. To exploit the tumour microenvironment: Passive and active tumour targeting of nanocarriers for anti-cancer drug delivery. J. Control. Rel. 148, 135–146 (2010).

    Article  CAS  Google Scholar 

  15. Al-Jamal, W. T. et al. Tumour Targeting of Functionalized Quantum Dot-Liposome Hybrids by Intravenous Administration. Mol. Pharm. 6, 520–530 (2009).

    Article  CAS  Google Scholar 

  16. Park, J. H. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Mater. 8, 1–6 (2009).

    Article  Google Scholar 

  17. Maldiney, T. et al. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 133, 11810–11815 (2011).

    Article  CAS  Google Scholar 

  18. Lecointre, A. et al. Designing a red persistent luminescence phosphor: The example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy). J. Phys. Chem. C 115, 4217–4227 (2011).

    Article  CAS  Google Scholar 

  19. Maldiney, T. et al. Trap depth optimization to improve optical properties of diopside-based nanophosphors for medical imaging. Proc. SPIE 8263, 826318 (2012).

    Article  Google Scholar 

  20. Bessière, A. et al. ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness. Opt. Express 19, 10131–10137 (2011).

    Article  Google Scholar 

  21. Pan, Z., Lu, Y. Y. & Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nature Mater. 11, 58–63 (2012).

    Article  CAS  Google Scholar 

  22. Abrams, B. L. & Holloway, P. H. Role of the surface in luminescent processes. Chem. Rev. 104, 5783–5802 (2004).

    Article  CAS  Google Scholar 

  23. Hirano, M., Imai, M. & Inagaki, M. Preparation of ZnGa2O4 spinel fine particles by the hydrothermal method. J. Am. Ceram. Soc. 83, 977–979 (2000).

    Article  CAS  Google Scholar 

  24. Zhang, X. et al. Photocatalytic decomposition of benzene by porous nanocrystalline ZnGa2O4 with a high surface area. Envir. Sci. Tech. 43, 5947–5951 (2009).

    Article  CAS  Google Scholar 

  25. Bessière, A. et al. Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate. Chem. Mater. 26, 1365–1373 (2014).

    Article  Google Scholar 

  26. Castano, A. P., Demidova, T. N. & Hamblin, M. R. Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn. Photodynam. Therapy 1, 279–293 (2004).

    Article  CAS  Google Scholar 

  27. Mikenda, W. & Preisinger, A. N-lines in the luminescence spectra of Cr3+-doped spinels: II Origins of N-lines. J. Lumin. 26, 67–83 (1981).

    Article  CAS  Google Scholar 

  28. Nie, W., Michel-Calendini, F. M., Linares, C., Boulon, G. & Daul, C. New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4 . J. Lumin. 46, 177–190 (1990).

    Article  CAS  Google Scholar 

  29. Yukihara, E. G. & McKeever, W. S. Optically Stimulated Luminescence: Fundamental and Applications (John Wiley, (2011).

    Book  Google Scholar 

  30. Derkosch, J & Mikenda, W. N-lines in the luminescence spectra of Cr3+-dopd spinels IV excitation spectra. J. Lumin. 28, 431–441 (1983).

    Article  CAS  Google Scholar 

  31. Brito, H. F. et al. Persistent luminescence mechanisms: human imagination at work. Opt. Mater. Exp. 2, 371–381 (2012).

    Article  CAS  Google Scholar 

  32. Dorenbos, P. Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds. J. Electrochem. Soc. 152, H107–H110 (2005).

    Article  CAS  Google Scholar 

  33. Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    Article  CAS  Google Scholar 

  34. Daou, T. J., Li, L., Reiss, P., Josserand, V. & Texier, I. Effect of poly(ethylene glycol) length on the in vivo behavior of coated quantum dots. Langmuir. 25, 3040–3044 (2009).

    Article  CAS  Google Scholar 

  35. Schipper, M. L. et al. Particle size, surface coating, and pegylation influence the biodistribution of quantum dots in living mice. Small 5, 126–134 (2009).

    Article  CAS  Google Scholar 

  36. Ishida, O., Maruyama, K. & Sasaki, K. Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumour-bearing mice. Int. J. Pharm. 190, 49–56 (1999).

    Article  CAS  Google Scholar 

  37. Poon, Z., Lee, J. B., Morton, S. W. & Hammond, P. T. Controlling in vivo stability and biodistribution in electrostatically assembled nanoparticles for systemic delivery. Nano Lett. 11, 2096–2103 (2011).

    Article  CAS  Google Scholar 

  38. Cho, E. C., Xie, J., Wurm, P. A. & Xia, Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I/KI etchant. Nano Lett. 9, 180–184 (2009).

    Google Scholar 

  39. Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    Article  CAS  Google Scholar 

  40. Fidler, I. J. Biological behavior of malignant melanoma cells correlated to their survival in vivo biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res. 35, 218–224 (1975).

    CAS  Google Scholar 

  41. Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nature Commun. 3, 1–9 (2012).

    Article  Google Scholar 

  42. Kruk, P. A., Rampino, N. J. & Bohr, V. A. DNA damage and repair in telomeres: Relation to aging. Proc. Natl Acad. Sci. USA 92, 258–262 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Lai-Kuen and B. Saubamea (from the Technical Platform of IFR71/IMTCE–Cellular & Molecular Imaging), L. Binet (for electron paramagnetic resonance experiments), K. R. Priolkar and N. Basavaraju (for bulk ZGO samples), C. Charrueau and N. Neveux (for biomarker dosage) and S. Maitrejean (for ZGO and QD experiment comparison). This work has been supported by the French National Agency (ANR) (NATLURIM project ANR-08-NANO-025) and IFCPAR/CEFIPRA (Indo-French Center for the Promotion of Advanced Research).

Author information

Authors and Affiliations

Authors

Contributions

T.M., B.V., D.G., D.S. and C.R. conceived and designed the research. T.M., J.S., E.T. and S.K.S. carried out the experiments. T.M., J.S., E.T. and D.S. were responsible for biological characterization and small animal in vivo imaging. T.M., A.B., S.K.S., B.V. and D.G. were responsible for optical and TSL characterization and mechanism, A.J.J.B. and P.D. were responsible for the TSL excitation spectra. All of the authors analysed the data and discussed the results. T.M., A.B., B.V., D.G., D.S. and C.R. wrote the manuscript. The authors declare no conflict of interest.

Corresponding authors

Correspondence to Daniel Scherman or Cyrille Richard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2032 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldiney, T., Bessière, A., Seguin, J. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nature Mater 13, 418–426 (2014). https://doi.org/10.1038/nmat3908

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3908

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing