Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Voltage tuning of thermal spin current in ferromagnetic tunnel contacts to semiconductors

Abstract

Spin currents are paramount to manipulate the magnetization of ferromagnetic elements in spin-based memory, logic and microwave devices, and to induce spin polarization in non-magnetic materials. A unique approach to create spin currents employs thermal gradients and heat flow. Here we demonstrate that a thermal spin current can be tuned conveniently by a voltage. In magnetic tunnel contacts to semiconductors (silicon and germanium), it is shown that a modest voltage (~200 mV) changes the thermal spin current induced by Seebeck spin tunnelling by a factor of five, because it modifies the relevant tunnelling states and thereby the spin-dependent thermoelectric parameters. The magnitude and direction of the spin current is also modulated by combining electrical and thermal spin currents with equal or opposite sign. The results demonstrate that spin-dependent thermoelectric properties away from the Fermi energy are accessible, and open the way towards tailoring thermal spin currents and torques by voltage, rather than material design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the approach and device layout.
Figure 2: Simultaneous thermal and electrical spin current in a Co70Fe30/MgO/Si tunnel contact.
Figure 3: Magnitude of thermal spin current for biased tunnel contacts.
Figure 4: Voltage tuning of thermal spin current in a Co70Fe30/MgO/Si tunnel contact.
Figure 5: Calculated thermal spin current versus tunnel voltage.
Figure 6: Voltage tuning of thermal spin current in a Co70Fe30/MgO tunnel contact on Ge.

Similar content being viewed by others

References

  1. Fert, A. Nobel lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 80, 1517–1530 (2008).

    CAS  Google Scholar 

  2. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  3. Jansen, R. Silicon spintronics. Nature Mater. 11, 400–408 (2012).

    Article  CAS  Google Scholar 

  4. Jungwirth, T., Wunderlich, J. & Olejník, K. Spin Hall effect devices. Nature Mater. 11, 382–390 (2012).

    Article  CAS  Google Scholar 

  5. Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nature Mater. 11, 372–381 (2012).

    Article  CAS  Google Scholar 

  6. Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nature Mater. 11, 391–399 (2012).

    Article  CAS  Google Scholar 

  7. Slachter, A., Bakker, F. L., Adam, J-P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Phys. 6, 879–882 (2010).

    Article  CAS  Google Scholar 

  8. Le Breton, J. C., Sharma, S., Saito, H., Yuasa, S. & Jansen, R. Thermal spin current from a ferromagnet to silicon by Seebeck spin tunneling. Nature 475, 82–86 (2011).

    Article  CAS  Google Scholar 

  9. Scharf, B., Matos-Abiague, A., Žutić, I. & Fabian, J. Theory of thermal spin-charge coupling in electronic systems. Phys. Rev. B 85, 085208 (2012).

    Article  Google Scholar 

  10. Jansen, R., Deac, A. M., Saito, H. & Yuasa, S. Thermal spin current and magnetothermopower by Seebeck spin tunneling. Phys. Rev. B 85, 094401 (2012).

    Article  Google Scholar 

  11. Flipse, J., Bakker, F. L., Slachter, A., Dejene, F. K. & van Wees, B. J. Direct observation of the spin-dependent Peltier effect. Nature Nanotech. 7, 166–168 (2012).

    Article  CAS  Google Scholar 

  12. Jain, A. et al. Electrical and thermal spin accumulation in germanium. Appl. Phys. Lett. 101, 022402 (2012).

    Article  Google Scholar 

  13. Jeon, K. R. et al. Thermal spin injection and accumulation in CoFe/MgO/n-type Ge contacts. Sci. Rep. 2, 962 (2012).

    Article  Google Scholar 

  14. Walter, M. et al. Seebeck effect in magnetic tunnel junctions. Nature Mater. 10, 742–746 (2011).

    Article  CAS  Google Scholar 

  15. Liebing, N. et al. Tunneling magnetothermopower in magnetic tunnel junction nanopillars. Phys. Rev. Lett. 107, 177201 (2011).

    Article  CAS  Google Scholar 

  16. Lin, W. et al. Giant spin-dependent thermoelectric effect in magnetic tunnel junctions. Nature Commun. 3, 744 (2012).

    Article  Google Scholar 

  17. Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    Article  CAS  Google Scholar 

  18. Lou, X. et al. Electrical detection of spin accumulation at a ferromagnet–semiconductor interface. Phys. Rev. Lett. 96, 176603 (2006).

    Article  CAS  Google Scholar 

  19. Dash, S. P., Sharma, S., Patel, R. S., de Jong, M. P. & Jansen, R. Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009).

    Article  CAS  Google Scholar 

  20. Dash, S. P. et al. Spin precession and inverted Hanle effect in a semiconductor near a finite-roughness ferromagnetic interface. Phys. Rev. B 84, 054410 (2011).

    Article  Google Scholar 

  21. Tran, M. et al. Enhancement of the spin accumulation at the interface between a spin-polarized tunnel junction and a semiconductor. Phys. Rev. Lett. 102, 036601 (2009).

    Article  CAS  Google Scholar 

  22. Jansen, R., Dash, S. P., Sharma, S. & Min, B. C. Silicon spintronics with ferromagnetic tunnel devices. Semicond. Sci. Technol. 27, 083001 (2012).

    Article  Google Scholar 

  23. Li, C. H., van ’t Erve, O. M. J. & Jonker, B. T. Electrical injection and detection of spin accumulation in silicon at 500 K with magnetic metal/silicon dioxide contacts. Nature Commun. 2, 245 (2011).

    Article  CAS  Google Scholar 

  24. Li, C. H., van’t Erve, O. M. J. & Jonker, B. T. Comment: Electrical injection and detection of spin accumulation in silicon at 500 K with magnetic metal/silicon dioxide contacts [Nature Commun. 2:245 http:dx.doi.org/10.1038/ncomms125 (2011)]. Preprint at http://arxiv.org/abs/1110.1620 (2011)

  25. Iba, S. et al. Spin accumulation in nondegenerate and heavily doped p-type germanium. Appl. Phys. Exp. 5, 023003 (2012).

    Article  Google Scholar 

  26. Uemura, T., Kondo, K., Fujisawa, J., Matsuda, K.I. & Yamamoto, M. Critical effect of spin-dependent transport in a tunnel barrier on enhanced Hanle-type signals observed in three-terminal geometry. Appl. Phys. Lett. 101, 132411 (2012).

    Article  Google Scholar 

  27. Sharma, S. et al. Anomalous scaling of spin accumulation in ferromagnetic tunnel devices with silicon and germanium. Preprint at http://arxiv.org/abs/1211.4460 (2012)

  28. Jonker, B. T., Kioseoglou, G., Hanbicki, A. T., Li, C. H. & Thompson, P. E. Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nature Phys. 3, 542–546 (2007).

    Article  CAS  Google Scholar 

  29. Jansen, R. et al. Electrical spin injection into moderately doped silicon enabled by tailored interfaces. Phys. Rev. B 82, 241305 (2010).

    Article  Google Scholar 

  30. Jia, X., Liu, K., Xia, K. & Bauer, G. E. W. Thermal spin transfer in Fe–MgO–Fe tunnel junctions. Phys. Rev. Lett 107, 176603 (2011).

    Article  Google Scholar 

  31. Jia, X. & Xia, K. Thermal electric effects in Fe/GaAs/Fe tunnel junctions. AIP Adv. 2, 041411 (2012).

    Article  Google Scholar 

  32. Jeon, K. R., Park, C. Y. & Shin, S. C. Epitaxial growth of MgO and CoFe/MgO on Ge(001) substrates by molecular beam epitaxy. Cryst. Growth Des. 10, 1346–1350 (2010).

    Article  CAS  Google Scholar 

  33. Jeon, K. R. et al. Electrical spin accumulation with improved bias voltage dependence in a crystalline CoFe/MgO/Si system. Appl. Phys. Lett. 98, 262102 (2011).

    Article  Google Scholar 

  34. Jeon, K. R. et al. Effect of spin relaxation rate on the interfacial spin depolarization in ferromagnet/oxide/semiconductor contacts. Appl. Phys. Lett. 101, 022401 (2012).

    Article  Google Scholar 

  35. Jeon, K. R., Min, B. C., Park, Y. H., Park, S. Y. & Shin, S. C. Electrical investigation of the oblique Hanle effect in ferromagnet/oxide/semiconductor contacts. Phys. Rev. B 87, 195311 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the KIST institutional program (2E22732 and 2V02720) and by the Pioneer Research Center Program (2011-0027905). K-R.J. and A.S. acknowledge a JSPS Postdoctoral Fellowship for Foreign Researchers, and H.S. acknowledges support from the Funding Program for Next Generation World-Leading Researchers.

Author information

Authors and Affiliations

Authors

Contributions

K-R.J. designed the experiments together with H.S. and R.J.; The devices were designed and fabricated by K-R.J, with the help and fabrication facilities provided by B-C.M. and S-C.S.; the measurements were carried out by K-R.J. with the help of A.S., H.S. and R.J.; the model calculation was done by R.J. and the data analysis was done by K-R.J., together with R.J.; all authors discussed the results and commented on the manuscript, which was written by K-R.J. and R.J.

Corresponding author

Correspondence to Ron Jansen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 714 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, KR., Min, BC., Spiesser, A. et al. Voltage tuning of thermal spin current in ferromagnetic tunnel contacts to semiconductors. Nature Mater 13, 360–366 (2014). https://doi.org/10.1038/nmat3869

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3869

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing