Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator

Abstract

Three-dimensional topological crystalline insulators were recently predicted and observed in the SnTe class of IV–VI semiconductors, which host metallic surface states protected by crystal symmetries. In this work, we study thin films of these materials and expose their potential for device applications. We demonstrate that thin films of SnTe and Pb1−xSnxSe(Te) grown along the (001) direction are topologically non-trivial in a wide range of film thickness and carry conducting spin-filtered edge states that are protected by the (001) mirror symmetry through a topological invariant. Application of an electric field perpendicular to the film will break the mirror symmetry and generate a bandgap in these edge states. This functionality motivates us to propose a topological transistor device in which charge and spin transport are maximally entangled and simultaneously controlled by an electric field. The high on/off operation speed and coupling of spin and charge in such a device may lead to electronic and spintronic applications for topological crystalline insulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Energy-level diagram of TCI thin films.
Figure 2: Band inversion in SnTe films.
Figure 3: Phase diagram of 2D TCIs.
Figure 4: Effect of electric field on edge states.
Figure 5: Topological transistor.
Figure 6: Berry curvature.

Similar content being viewed by others

References

  1. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  Google Scholar 

  2. Teo, J. Y. C., Fu, L. & Kane, C. L. Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−xSbx . Phys. Rev. B 78, 045426 (2008).

    Article  Google Scholar 

  3. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  4. Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  CAS  Google Scholar 

  5. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    Article  CAS  Google Scholar 

  6. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Article  Google Scholar 

  7. Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nature Commun. 3, 982 (2012).

    Article  Google Scholar 

  8. Tanaka, Y. et al. Experimental realization of a topological crystalline insulator in SnTe. Nature Phys. 8, 800–803 (2012).

    Article  CAS  Google Scholar 

  9. Dziawa, P. et al. Topological crystalline insulator states in Pb1−xSnxSe. Nature Mater. 11, 1023–1027 (2012).

    Article  CAS  Google Scholar 

  10. Xu, S. Y. et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe. Nature Commun. 3, 1192 (2012).

    Article  Google Scholar 

  11. Mong, R. S. K., Essin, A. M. & Moore, J. E. Antiferromagnetic topological insulators. Phys. Rev. B 81, 245209 (2010).

    Article  Google Scholar 

  12. Okada, Y. et al. Observation of Dirac node formation and mass acquisition in a topological crystalline insulator. Science 341, 1496–1499 (2013).

    Article  CAS  Google Scholar 

  13. Takahashi, R. & Murakami, S. Gapless interface states between topological insulators with opposite dirac velocities. Phys. Rev. Lett. 107, 166805 (2011).

    Article  Google Scholar 

  14. Kargarian, M. & Fiete, G. A. Topological crystalline insulators in transition metal oxides. Phys. Rev. Lett. 110, 156403 (2013).

    Article  Google Scholar 

  15. Chiu, C-K., Yao, H. & Ryu, S. Classification of topological insulators and superconductors in the presence of reflection symmetry. Phys. Rev. B 88, 075142 (2013).

    Article  Google Scholar 

  16. Morimoto, T. & Furusaki, A. Topological classification with additional symmetries from Clifford algebras. Phys. Rev. B 88, 125129 (2013).

    Article  Google Scholar 

  17. Ye, M., Allen, J. W. & Sun, K. Topological crystalline Kondo insulators and universal topological surface states of SmB6. Preprint at http://arxiv.org/abs/1307.7191 (2013).

  18. Weng, H., Zhao, J., Wang, Z., Fang, Z. & Dai, X. Topological crystalline Kondo insulator in mixed valence ytterbium borides. Preprint at http://arxiv.org/abs/1308.5607 (2013).

  19. Abanin, D. A., Lee, P. A. & Levitov, L. S. Spin-filtered edge states and quantum Hall effect in graphene. Phys. Rev. Lett. 96, 176803 (2006).

    Article  Google Scholar 

  20. Young, A. F. et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Preprint at http://arxiv.org/abs/1307.5104 (2013).

  21. Maher, P. et al. Evidence for a spin phase transition at charge neutrality in bilayer graphene. Nature Phys. 9, 154–158 (2013).

    Article  CAS  Google Scholar 

  22. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  CAS  Google Scholar 

  23. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  CAS  Google Scholar 

  24. Bauer, G. & Springholz, G. Molecular beam epitaxy of IV–VI semiconductor hetero- and nano-structures. Phys. Status Solidi B 244, 2752–2767 (2007).

    Article  Google Scholar 

  25. Abramof, E., Ferreira, S. O., Rappl, P. H. O., Closs, H. & Bandeira, I. N. Electrical properties of Pb1−xSnxTe layers with grown by molecular beam epitaxy. J. Appl. Phys. 82, 2405–2410 (1997).

    Google Scholar 

  26. Ishida, A. et al. Electrical and thermoelectrical properties of SnTe-based films and superlattices. Appl. Phys. Lett. 95, 122106 (2009).

    Article  Google Scholar 

  27. Liu, J., Duan, W. & Fu, L. Two types of surface states in topological crystalline insulators. Phys. Rev. B (in the press); preprint at http://arxiv.org/abs/1304.0430 (2013).

  28. Fang, C., Gilbert, M. J., Xu, S-Y., Bernevig, B. A. & Hasan, M. Z. Theory of quasiparticle interference in mirror-symmetric two-dimensional systems and its application to surface states of topological crystalline insulators. Phys. Rev. B 88, 125141 (2013).

    Article  Google Scholar 

  29. Wang, Y. J. et al. Nontrivial spin texture of the coaxial Dirac cones on the surface of topological crystalline insulator SnTe. Phys. Rev. B 87, 235317 (2013).

    Article  Google Scholar 

  30. Safaei, S., Kacman, P. & Buczko, R. Topological crystalline insulator (Pb,Sn)Te: Surface states and their spin polarization. Phys. Rev. B 88, 045305 (2013).

    Article  Google Scholar 

  31. Lent, C. S. et al. Relativistic empirical tight-binding theory of the energy bands of GeTe, SnTe, PbTe, PbSe, PbS, and their alloys. Superlatt. Microstruct. 2, 491–499 (1986).

    Article  CAS  Google Scholar 

  32. Lopez Sancho, M. P., Lopez Sancho, J. M. & Rubio, J. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F 15, 851 (1985).

    Article  Google Scholar 

  33. Du, L., Knez, I., Sullivan, G. & Du, R. Observation of quantum spin Hall states in InAs/GaSb bilayers under broken time-reversal symmetry. Preprint at http://arxiv.org/abs/1306.1925 (2013).

  34. Lang, M. et al. Competing weak localization and weak antilocalization in ultrathin topological insulators. Nano Lett. 13, 48–53 (2013).

    Article  CAS  Google Scholar 

  35. Khokhlov, D. Lead Chalcogenides: Physics and Applications (CRC, 2002).

    Google Scholar 

  36. Ishida, A., Aoki, M. & Fujiyasu, H. Semimetallic Hall properties of PbTe–SnTe superlattice. J. Appl. Phys. 58, 1901–1903 (1985).

    Article  CAS  Google Scholar 

  37. Rogacheva, E. I. et al. Quantum size effects in n-PbTe/p-SnTe/n-PbTe heterostructures. Appl. Phys. Lett. 86, 063103 (2005).

    Article  Google Scholar 

  38. Taskin, A. A., Sasaki, S., Segawa, K. & Ando, Y. Topological surface transport in epitaxial SnTe thin films grown on Bi2Te3. Preprint at http://arxiv.org/abs/1305.2470 (2013).

  39. Grabecki, G. et al. PbTe—A new medium for quantum ballistic devices. Physica E 34, 560–563 (2006).

    Article  CAS  Google Scholar 

  40. Fang, C., Gilbert, M. J. & Bernevig, B. A. Large Chern number quantum anomalous Hall effect in thin-film topological crystalline insulators. Preprint at http://arxiv.org/abs/1306.0888 (2013).

  41. Zhang, F., Li, X., Feng, J., Kane, C. L. & Mele, E. J. Zeeman field-tuned transitions for surface chern insulators. Preprint at http://arxiv.org/abs/1309.7682 (2013).

  42. Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Ando and A. Young for helpful comments and suggestions. This work is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526. T.H.H. acknowledges support under NSF Graduate Research Fellowship No. 0645960. J.L and W.D. acknowledge support from the Ministry of Science and Technology of China (Grant Nos 2011CB921901 and 2011CB606405) and the National Natural Science Foundation of China (Grant No. 11074139). P.W. and J.M. are grateful for support from the MIT MRSEC through the MRSEC Program of the NSF under award number DMR-0819762, as well as NSF DMR grants 1207469 and ONR grant N00014-13-1-0301.

Author information

Authors and Affiliations

Authors

Contributions

J.L. performed band-structure and mirror Chern number calculations. T.H.H. performed theoretical analysis with contributions from J.L. T.H.H. and L.F. wrote the manuscript with contributions from all authors. L.F. conceived and supervised the project. All correspondence should be addressed to L.F.

Corresponding author

Correspondence to Liang Fu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Hsieh, T., Wei, P. et al. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. Nature Mater 13, 178–183 (2014). https://doi.org/10.1038/nmat3828

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3828

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing