Article | Published:

Landau theory of topological defects in multiferroic hexagonal manganites

Nature Materials volume 13, pages 4249 (2014) | Download Citation

Abstract

Topological defects in ordered states with spontaneously broken symmetry often have unusual physical properties, such as fractional electric charge or a quantized magnetic field flux, originating from their non-trivial topology. Coupled topological defects in systems with several coexisting orders give rise to unconventional functionalities, such as the electric-field control of magnetization in multiferroics resulting from the coupling between the ferroelectric and ferromagnetic domain walls. Hexagonal manganites provide an extra degree of freedom: in these materials, both ferroelectricity and magnetism are coupled to an additional, non-ferroelectric structural order parameter. Here we present a theoretical study of topological defects in hexagonal manganites based on Landau theory with parameters determined from first-principles calculations. We explain the observed flip of electric polarization at the boundaries of structural domains, the origin of the observed discrete vortices, and the clamping between ferroelectric and antiferromagnetic domain walls. We show that structural vortices induce magnetic ones and that, consistent with a recent experimental report, ferroelectric domain walls can carry a magnetic moment.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

  2. 2.

    & Multiferroics: Progress and prospects in thin films. Nature Mater. 6, 21–29 (2007).

  3. 3.

    Trend: Classifying multiferroics: Mechanisms and effects. Physics 2, 20 (2009).

  4. 4.

    et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

  5. 5.

    et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).

  6. 6.

    et al. Low-field magnetoelectric effect at room temperature. Nature Mater. 9, 797–802 (2010).

  7. 7.

    , , & The origin of ferroelectricity in magnetoelectric YMnO3. Nature Mater. 3, 164–170 (2004).

  8. 8.

    , , , & First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71, 014113 (2005).

  9. 9.

    et al. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008).

  10. 10.

    et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008).

  11. 11.

    , , , & Electric field switching of the magnetic anisotropy of a ferromagnetic layer exchange coupled to the multiferroic compound BiFeO3. Phys. Rev. Lett. 103, 257601 (2009).

  12. 12.

    et al. Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys. Rev. Lett. 106, 057206 (2011).

  13. 13.

    Ferroelectrically induced weak ferromagnetism by design. Phys. Rev. Lett. 100, 167203 (2008).

  14. 14.

    , , , & Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

  15. 15.

    , , & On the crystal structure of the manganese(III) trioxides of the heavy lanthanides and yttrium. Acta Crystallogr. 16, 957–962 (1963).

  16. 16.

    et al. Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R = Y, Yb, and Lu). Phys. Rev. B 64, 104419 (2001).

  17. 17.

    & Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103 (2005).

  18. 18.

    et al. Strong spin-lattice coupling in multiferroic HoMnO3: Thermal expansion anomalies and pressure effect. Phys. Rev. B 71, 060407 (2005).

  19. 19.

    et al. Giant magneto-elastic coupling in multiferroic hexagonal manganites. Nature 451, 805–808 (2008).

  20. 20.

    et al. Scaling behavior of the magnetocapacitance of YbMnO3. J. Phys.: Condens. Matter 21, 496002 (2009).

  21. 21.

    , , & Structure and interaction of antiferromagnetic domain walls in hexagonal YMnO3. Phys. Rev. Lett. 90, 177204 (2003).

  22. 22.

    , & Clamping of ferroelectric and antiferromagnetic order parameters of YMnO3. J. Phys. Condens. Matter 15, L103–L109 (2003).

  23. 23.

    & Ferroelectric and antiferromagnetic domain wall. J. Phys. Soc. Jpn. 72, 2959–2966 (2003).

  24. 24.

    et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nature Mater. 9, 253–258 (2010).

  25. 25.

    et al. Self-organization, condensation, and annihilation of topological vortices and antivortices in a multiferroic. Proc. Natl Acad. Sci. USA 107, 21366–21370 (2010).

  26. 26.

    , , & Electrostatic topology of ferroelectric domains in YMnO3. Appl. Phys. Lett. 97, 012904 (2010).

  27. 27.

    , & Manipulation of ferroelectric vortex domains in hexagonal manganites. J. Appl. Phys. 110, 052007 (2011).

  28. 28.

    Multiferroics: A whirlwind of opportunities. Nature Mater. 9, 188–190 (2010).

  29. 29.

    & Structural domain walls in polar hexagonal manganites. Nature Commun. 4, 1540 (2013).

  30. 30.

    & Principles of Condensed Matter Physics (Cambridge Univ. Press, 1995).

  31. 31.

    , & Domain growth in the clock model. Phys. Rev. B 31, 3040–3047 (1985).

  32. 32.

    , & Domain-growth kinetics for the Q-state Potts model in two and three dimensions. Phys. Rev. B 38, 4752–4760 (1988).

  33. 33.

    et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).

  34. 34.

    & Effects of electron irradiation on the ferroelectric 180° in-plane nanostripe domain structure in a thin film prepared from a bulk single crystal of BaTiO3 by focused ion beam. J. Appl. Phys. 109, 014104 (2011).

  35. 35.

    , & Spin-rotation phenomena and magnetic phase diagrams of hexagonal RMnO3. J. Appl. Phys. 93, 8194–8196 (2003).

  36. 36.

    et al. Unconventional spin fluctuations in the hexagonal antiferromagnet YMnO3. Phys. Rev. B 68, 014432 (2003).

  37. 37.

    , , , & Origin of electric-field-induced magnetization in multiferroic HoMnO3. Phys. Rev. Lett. 104, 147204 (2010).

  38. 38.

    , , , & Collective magnetism at multiferroic vortex domain walls. Nano Lett. 12, 6055–6059 (2012).

  39. 39.

    , & Magnetic ordering of rare earth ions and magnetic-electric interaction of hexagonal RMnO3 (R = Ho, Er, Yb or Lu). J. Phys. Soc. Jpn. 71, 1558–1564 (2002).

  40. 40.

    et al. First-principles computation of material properties: The ABINIT software project. Comput. Mater. Sci. 25, 478–492 (2002).

  41. 41.

    et al. A brief introduction to the ABINIT software package. Z. Kristallogr. 220, 558–562 (2005).

  42. 42.

    , , , & Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure. Comput. Mater. Science 42, 337–351 (2008).

  43. 43.

    & Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

  44. 44.

    , & γ and β cerium: LDA+U calculations of ground-state parameters. Phys. Rev. B 77, 155104 (2008).

  45. 45.

    , & Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).

  46. 46.

    et al. Mn3+ in trigonal bipyramidal coordination: A new blue chromophore. J. Am. Chem. Soc. 131, 17084–17086 (2009).

  47. 47.

    & Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993).

Download references

Acknowledgements

We are grateful to S-W. Cheong for discussions of the stripe state. S.A. and M.M. were supported by the ZIAM Groningen under award MSC06-20 and by FOM grant 11PR2928. K.T.D. acknowledges fellowship support from the International Center of Materials Research. We acknowledge support from the Center for Scientific Computing from the CNSI, MRL, an NSF MRSEC grant (DMR-1121053) and Hewlett Packard. N.A.S. was supported by the ETH Zürich.

Author information

Affiliations

  1. Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

    • Sergey Artyukhin
    •  & Maxim Mostovoy
  2. Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

    • Sergey Artyukhin
  3. Materials Research Laboratory, University of California, Santa Barbara, California 93106-5121, USA

    • Kris T. Delaney
  4. Materials Theory, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland

    • Nicola A. Spaldin

Authors

  1. Search for Sergey Artyukhin in:

  2. Search for Kris T. Delaney in:

  3. Search for Nicola A. Spaldin in:

  4. Search for Maxim Mostovoy in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Maxim Mostovoy.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat3786

Further reading