Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Imaging macrophages with nanoparticles

Abstract

Nanomaterials have much to offer, not only in deciphering innate immune cell biology and tracking cells, but also in advancing personalized clinical care by providing diagnostic and prognostic information, quantifying treatment efficacy and designing better therapeutics. This Review presents different types of nanomaterial, their biological properties and their applications for imaging macrophages in human diseases, including cancer, atherosclerosis, myocardial infarction, aortic aneurysm, diabetes and other conditions. We anticipate that future needs will include the development of nanomaterials that are specific for immune cell subsets and can be used as imaging surrogates for nanotherapeutics. New in vivo imaging clinical tools for noninvasive macrophage quantification are thus ultimately expected to become relevant to predicting patients' clinical outcome, defining treatment options and monitoring responses to therapy.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Macrophages and their progenitors in the body and their relevance to nanoparticles and imaging.
Figure 2: Examples of magnetic nanoparticles for biomedical use.
Figure 3: Organ and cell type distribution of systemically injected nanomaterials.
Figure 4: Uptake of nanoparticles into professional phagocytes and into other cells.
Figure 5: Imaging tumour-associated macrophages (TAMs) with multimodal dextran nanoparticles.
Figure 6: Use of magnetic nanoparticles for nodal cancer staging.
Figure 7: Cardiovascular nanoparticle imaging.
Figure 8: Inflammation imaging in diabetes using nanoparticles.

References

  1. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  Google Scholar 

  2. Shi, C. et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity 34, 590–601 (2011).

    Article  CAS  Google Scholar 

  3. Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  Google Scholar 

  4. Cortez-Retamozo, V. et al. Origins of tumor-associated macrophages and neutrophils. Proc. Natl Acad. Sci. USA 109, 2491–2496 (2012).

    Article  Google Scholar 

  5. Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    Article  CAS  Google Scholar 

  6. Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of Th2 inflammation. Science 332, 1284–1288 (2011).

    Article  CAS  Google Scholar 

  7. Cortez-Retamozo, V. et al. Angiotensin II drives the production of tumor-promoting macrophages. Immunity 38, 296–308 (2013).

    Article  CAS  Google Scholar 

  8. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  CAS  Google Scholar 

  9. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  Google Scholar 

  10. Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    Article  CAS  Google Scholar 

  11. Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    Article  CAS  Google Scholar 

  12. Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).

    Article  CAS  Google Scholar 

  13. Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity 16, 157–168 (2002).

    Article  CAS  Google Scholar 

  14. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  Google Scholar 

  15. Bhargava, P. & Lee, C. H. Role and function of macrophages in the metabolic syndrome. Biochem. J. 442, 253–262 (2012).

    Article  CAS  Google Scholar 

  16. Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R. & Tsourkas, A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338, 903–910 (2012).

    Article  CAS  Google Scholar 

  17. Li, C. A targeted approach to cancer imaging and therapy. Nature. Mater. 13, 110–115 (2014).

    Article  CAS  Google Scholar 

  18. Shao, H., Yoon, T. J., Liong, M., Weissleder, R. & Lee, H. Magnetic nanoparticles for biomedical NMR-based diagnostics. Beilstein J. Nanotechnol. 1, 142–154 (2010).

    Article  CAS  Google Scholar 

  19. Colombo, M. et al. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41, 4306–4334 (2012).

    Article  CAS  Google Scholar 

  20. Jacobs, I. S. Magnetic materials and applications: a quarter-century overview. J. Appl. Phys. 50, 7294–7307 (1979).

    Article  CAS  Google Scholar 

  21. Shen, T., Weissleder, R., Papisov, M., Bogdanov, A. J. & Brady, T. J. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn. Reson. Med. 29, 599–604 (1993).

    Article  CAS  Google Scholar 

  22. Chourpa, I., Douziech-Eyrolles, L. & Ngaboni-Okassa, L. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 130, 1395–1403 (2005).

    Article  CAS  Google Scholar 

  23. Yoon, T. J., Lee, H., Shao, H. & Weissleder, R. Highly magnetic core–shell nanoparticles with a unique magnetization mechanism. Angew. Chem. Int. Ed. 50, 4663–4666 (2011).

    Article  CAS  Google Scholar 

  24. Gallo, J., Genicio, N. & Penades, S. Uptake and intracellular fate of fluorescent-magnetic glyco-nanoparticles. Adv. Healthc. Mater. 1, 302–307 (2012).

    Article  CAS  Google Scholar 

  25. Yu, H. et al. Dumbbell-like bifunctional Au–Fe3O4 nanoparticles. Nano. Lett. 5, 379–382 (2005).

    Article  CAS  Google Scholar 

  26. Zeng, Q., Baker, I., Loudis, J. A., Liao, Y. & Hoopes, P. J. Fe/Fe oxide nanocomposite particles with large specific absorption rate for hyperthermia. Appl. Phys. Lett. 90, 233112 (2007).

    Article  CAS  Google Scholar 

  27. Yoon, T. J., Lee, H., Shao, H., Hilderbrand, S. A. & Weissleder, R. Multicore assemblies potentiate magnetic properties of biomagnetic nanoparticles. Adv. Mater. 23, 4793–4797 (2011).

    Article  CAS  Google Scholar 

  28. Jordan, A., Scholz, R., Wust, P. & Fähling, H. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201, 413–419 (1999).

    Article  CAS  Google Scholar 

  29. Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005).

    Article  CAS  Google Scholar 

  30. Wahajuddin, Arora, S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomed. 7, 3445–3471 (2012).

    Article  CAS  Google Scholar 

  31. Jedlovszky-Hajdu, A., Bombelli, F. B., Monopoli, M. P., Tombacz, E. & Dawson, K. A. Surface coatings shape the protein corona of SPIONs with relevance to their application in vivo. Langmuir 28, 14983–14991 (2012).

    Article  CAS  Google Scholar 

  32. Harisinghani, M., Ross, R. W., Guimaraes, A. R. & Weissleder, R. Utility of a new bolus-injectable nanoparticle for clinical cancer staging. Neoplasia 9, 1160–1165 (2007).

    Article  CAS  Google Scholar 

  33. Tassa, C., Shaw, S. Y. & Weissleder, R. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res. 44, 842–852 (2011).

    Article  CAS  Google Scholar 

  34. Taupitz, M. et al. New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits. J. Magn. Reson. Imaging 12, 905–911 (2000).

    Article  CAS  Google Scholar 

  35. Sheashaa, H. et al. Parenteral iron therapy in treatment of anemia in end-stage renal disease patients: a comparative study between iron saccharate and gluconate. Nephron. Clin. Pract. 99, c97–c101 (2005).

    Article  CAS  Google Scholar 

  36. Wei, H. et al. Compact zwitterion-coated iron oxide nanoparticles for biological applications. Nano. Lett. 12, 22–25 (2012).

    Article  CAS  Google Scholar 

  37. Benbenishty-Shamir, H., Gilert, R., Gotman, I., Gutmanas, E. Y. & Sukenik, C. N. Phosphonate-anchored monolayers for antibody binding to magnetic nanoparticles. Langmuir 27, 12082–12089 (2011).

    Article  CAS  Google Scholar 

  38. Portet, D., Denizot, B., Rump, E., Lejeune, J. J. & Jallet, P. Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J. Colloid Interface Sci. 238, 37–42 (2001).

    Article  CAS  Google Scholar 

  39. Skajaa, T. et al. The biological properties of iron oxide core high-density lipoprotein in experimental atherosclerosis. Biomaterials 32, 206–213 (2011).

    Article  CAS  Google Scholar 

  40. Frias, J. C., Ma, Y., Williams, K. J., Fayad, Z. A. & Fisher, E. A. Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. Nano. Lett. 6, 2220–2224 (2006).

    Article  CAS  Google Scholar 

  41. Ingram, D. R. et al. Superparamagnetic nanoclusters coated with oleic acid bilayers for stabilization of emulsions of water and oil at low concentration. J. Colloid Interface Sci. 351, 225–232 (2010).

    Article  CAS  Google Scholar 

  42. Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T. & Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnol. 23, 1418–1423 (2005).

    Article  CAS  Google Scholar 

  43. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotechnol. 26, 561–569 (2008).

    Article  CAS  Google Scholar 

  44. Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnol. 29, 1005–1010 (2011).

    Article  CAS  Google Scholar 

  45. Ghosh, D. et al. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nature Nanotech. 7, 677–682 (2012).

    Article  CAS  Google Scholar 

  46. Maillard, N., Clouet, A., Darbre, T. & Reymond, J. L. Combinatorial libraries of peptide dendrimers: design, synthesis, on-bead high-throughput screening, bead decoding and characterization. Nature Protoc. 4, 132–142 (2009).

    Article  CAS  Google Scholar 

  47. Tassa, C. et al. Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles. Bioconjug. Chem. 21, 14–19 (2010).

    Article  CAS  Google Scholar 

  48. Epa, V. C. et al. Modeling biological activities of nanoparticles. Nano. Lett. 12, 5808–5812 (2012).

    Article  CAS  Google Scholar 

  49. Fourches, D. et al. Quantitative nanostructure-activity relationship modeling. ACS Nano 4, 5703–5712 (2010).

    Article  CAS  Google Scholar 

  50. Korosoglou, G. et al. Off-resonance angiography: a new method to depict vessels—phantom and rabbit studies. Radiology 249, 501–509 (2008).

    Article  Google Scholar 

  51. Balducci, A. et al. A novel probe for the non-invasive detection of tumor-associated inflammation. Oncoimmunology 2, e23034 (2013).

    Article  Google Scholar 

  52. Hitchens, T. K. et al. 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magn. Reson. Med. 65, 1144–1153 (2011).

    Article  Google Scholar 

  53. Welch, M. J., Hawker, C. J. & Wooley, K. L. The advantages of nanoparticles for PET. J. Nucl. Med. 50, 1743–1746 (2009).

    Article  CAS  Google Scholar 

  54. Keliher, E. J. et al. 89Zr-labeled dextran nanoparticles allow in vivo macrophage imaging. Bioconjug. Chem. 22, 2383–2389 (2011).

    Article  CAS  Google Scholar 

  55. Devaraj, N. K., Keliher, E. J., Thurber, G. M., Nahrendorf, M. & Weissleder, R. 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug. Chem. 20, 397–401 (2009).

    Article  CAS  Google Scholar 

  56. Fukukawa, K. et al. Synthesis and characterization of core-shell star copolymers for in vivo PET imaging applications. Biomacromolecules 9, 1329–1339 (2008).

    Article  CAS  Google Scholar 

  57. Li, A. et al. Synthesis and in vivo pharmacokinetic evaluation of degradable shell cross-linked polymer nanoparticles with poly(carboxybetaine) versus poly(ethylene glycol) surface-grafted coatings. ACS Nano 6, 8970–8982 (2012).

    Article  CAS  Google Scholar 

  58. Liu, T. W., Macdonald, T. D., Shi, J., Wilson, B. C. & Zheng, G. Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew. Chem. Int. Ed. 52, 13128–131231 (2012).

    Article  CAS  Google Scholar 

  59. Bradbury, M. S. et al. Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integr. Biol. 5, 74–86 (2012).

    Article  CAS  Google Scholar 

  60. Jarrett, B. R., Gustafsson, B., Kukis, D. L. & Louie, A. Y. Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug. Chem. 19, 1496–1504 (2008).

    Article  CAS  Google Scholar 

  61. Zeng, D. et al. 64Cu core-labeled nanoparticles with high specific activity via metal-free click chemistry. ACS Nano 6, 5209–5219 (2012).

    Article  CAS  Google Scholar 

  62. Nahrendorf, M. et al. Detection of macrophages in aortic aneurysms by nanoparticle positron emission tomography-computed tomography. Arterioscl. Throm. Vas. 31, 750–757 (2011).

    Article  CAS  Google Scholar 

  63. Pittet, M. J., Swirski, F. K., Reynolds, F., Josephson, L. & Weissleder, R. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nature Protoc. 1, 73–79 (2006).

    Article  CAS  Google Scholar 

  64. Nahrendorf, M. et al. Hybrid PET-optical imaging using targeted probes. Proc. Natl Acad. Sci. USA 107, 7910–7915 (2010).

    Article  Google Scholar 

  65. Pittet, M. J. & Weissleder, R. Intravital imaging. Cell 147, 983–991 (2011).

    Article  CAS  Google Scholar 

  66. Enochs, W. S. et al. MR imaging of slow axonal transport in vivo. Exp. Neurol. 123, 235–242 (1993).

    Article  CAS  Google Scholar 

  67. Nahrendorf, M. et al. Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ. Res. 100, 1218–1225 (2007).

    Article  CAS  Google Scholar 

  68. De Kozak, Y. et al. Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur. J. Immunol. 34, 3702–3712 (2004).

    Article  CAS  Google Scholar 

  69. Jaulin, N., Appel, M., Passirani, C., Barratt, G. & Labarre, D. Reduction of the uptake by a macrophagic cell line of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). J. Drug. Target 8, 165–172 (2000).

    Article  CAS  Google Scholar 

  70. Fuller, J. E. et al. Intracellular delivery of core-shell fluorescent silica nanoparticles. Biomaterials 29, 1526–1532 (2008).

    Article  CAS  Google Scholar 

  71. Cong, L. et al. Uniform silica coated fluorescent nanoparticles: synthetic method, improved light stability and application to visualize lymph network tracer. PLoS One 5, e13167 (2010).

    Article  CAS  Google Scholar 

  72. Coester, C. J., Langer, K., van Briesen, H. & Kreuter, J. Gelatin nanoparticles by two step desolvation: a new preparation method, surface modifications and cell uptake. J. Microencapsul. 17, 187–193 (2000).

    Article  CAS  Google Scholar 

  73. Skajaa, T. et al. Quantum dot and Cy5.5 labeled nanoparticles to investigate lipoprotein biointeractions via forster resonance energy transfer. Nano. Lett. 12, 5131–5138 (2010).

    Article  CAS  Google Scholar 

  74. Popovic, Z. et al. A nanoparticle size series for in vivo fluorescence imaging. Angew. Chem. Int. Ed. 49, 8649–8652 (2010).

    Article  CAS  Google Scholar 

  75. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnol. 22, 93–97 (2004).

    Article  Google Scholar 

  76. Stroh, M. et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature Med. 11, 678–682 (2005).

    Article  CAS  Google Scholar 

  77. Hilderbrand, S. A., Shao, F., Salthouse, C., Mahmood, U. & Weissleder, R. Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem. Commun. 4188–4190 (2009).

  78. Esipova, T. V. et al. Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. Proc. Natl Acad. Sci. USA 109, 20826–20831 (2012).

    Article  Google Scholar 

  79. Hyafil, F. et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nature Med. 13, 636–641 (2007).

    Article  CAS  Google Scholar 

  80. Aillon, K. L. et al. Iodinated nanoclusters as an inhaled computed tomography contrast agent for lung visualization. Mol. Pharm. 7, 1274–1282 (2010).

    Article  CAS  Google Scholar 

  81. Hyafil, F. et al. Quantification of inflammation within rabbit atherosclerotic plaques using the macrophage-specific CT contrast agent N1177: a comparison with 18F-FDG PET/CT and histology. J. Nucl. Med. 50, 959–965 (2009).

    Article  CAS  Google Scholar 

  82. Van Herck, J. L. et al. Multi-slice computed tomography with N1177 identifies ruptured atherosclerotic plaques in rabbits. Basic Res. Cardiol. 105, 51–59 (2010).

    Article  Google Scholar 

  83. Cormode, D. P. et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 256, 774–782 (2010).

    Article  Google Scholar 

  84. Hutter, E. et al. Microglial response to gold nanoparticles. ACS Nano 4, 2595–2606 (2010).

    Article  CAS  Google Scholar 

  85. Mahmoudi, M., Serpooshan, V. & Laurent, S. Engineered nanoparticles for biomolecular imaging. Nanoscale 3, 3007–3026 (2011).

    Article  CAS  Google Scholar 

  86. Rabin, O., Manuel Perez, J., Grimm, J., Wojtkiewicz, G. & Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nature Mater. 5, 118–122 (2006).

    Article  CAS  Google Scholar 

  87. Oh, M. H. et al. Large-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. J. Am. Chem. Soc. 133, 5508–5515 (2011).

    Article  CAS  Google Scholar 

  88. Cormode, D. P. et al. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett. 8, 3715–3723 (2008).

    Article  CAS  Google Scholar 

  89. Xia, X. R., Monteiro-Riviere, N. A. & Riviere, J. E. An index for characterization of nanomaterials in biological systems. Nature Nanotech. 5, 671–675 (2010).

    Article  CAS  Google Scholar 

  90. Maeda, H., Nakamura, H. & Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug. Deliv. Rev. 65, 71–79 (2012).

    Article  CAS  Google Scholar 

  91. Talekar, M., Kendall, J., Denny, W. & Garg, S. Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anticancer Drugs 22, 949–962 (2011).

    Article  CAS  Google Scholar 

  92. Baish, J. W. et al. Scaling rules for diffusive drug delivery in tumor and normal tissues. Proc. Natl Acad. Sci. USA 108, 1799–1803 (2011).

    Article  Google Scholar 

  93. Chauhan, V. P., Stylianopoulos, T., Boucher, Y. & Jain, R. K. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu. Rev. Chem. Biomol. Eng. 2, 281–298 (2011).

    Article  CAS  Google Scholar 

  94. Stylianopoulos, T., Soteriou, K., Fukumura, D. & Jain, R. K. Cationic nanoparticles have superior transvascular flux into solid tumors: insights from a mathematical model. Ann. Biomed. Eng. 41, 68–77 (2012).

    Article  Google Scholar 

  95. Raynal, I. et al. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest. Radiol. 39, 56–63 (2004).

    Article  CAS  Google Scholar 

  96. Araki, N., Johnson, M. T. & Swanson, J. A. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J. Cell. Biol. 135, 1249–1260 (1996).

    Article  CAS  Google Scholar 

  97. Norbury, C. C., Hewlett, L. J., Prescott, A. R., Shastri, N. & Watts, C. Class I MHC presentation of exogenous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity 3, 783–791 (1995).

    Article  CAS  Google Scholar 

  98. Lim, J. P. & Gleeson, P. A. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol. Cell Biol. 89, 836–843 (2011).

    Article  CAS  Google Scholar 

  99. Fincham, V. J. et al. Translocation of Src kinase to the cell periphery is mediated by the actin cytoskeleton under the control of the Rho family of small G proteins. J. Cell Biol. 135, 1551–1564 (1996).

    Article  CAS  Google Scholar 

  100. Moore, A., Weissleder, R. & Bogdanov, A. J. Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J. Magn. Reson. Imaging 7, 1140–1145 (1997).

    Article  CAS  Google Scholar 

  101. Zimmer, C. et al. Tumor cell endocytosis imaging facilitates delineation of the glioma-brain interface. Exp. Neurol. 143, 61–69 (1997).

    Article  CAS  Google Scholar 

  102. Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209, 123–137 (2012).

    Article  CAS  Google Scholar 

  103. Montet-Abou, K. et al. In vivo labelling of resting monocytes in the reticuloendothelial system with fluorescent iron oxide nanoparticles prior to injury reveals that they are mobilized to infarcted myocardium. Eur. Heart. J. 31, 1410–1420 (2010).

    Article  CAS  Google Scholar 

  104. Gordon, S. & Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604 (2010).

    Article  CAS  Google Scholar 

  105. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    Article  CAS  Google Scholar 

  106. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  Google Scholar 

  107. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  Google Scholar 

  108. Carlin, L. M. et al. Nr4a1-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell 153, 362–375 (2013).

    Article  CAS  Google Scholar 

  109. Cros, J. et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33, 375–386 (2010).

    Article  CAS  Google Scholar 

  110. Bernd, H., De Kerviler, E., Gaillard, S. & Bonnemain, B. Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program. Invest. Radiol. 44, 336–342 (2009).

    Article  CAS  Google Scholar 

  111. Liu, G., Gao, J., Ai, H. & Chen, X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9, 1533–1545 (2012).

    Article  CAS  Google Scholar 

  112. Weissleder, R. et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am. J. Roentgenol. 152, 167–173 (1989).

    Article  CAS  Google Scholar 

  113. Bourrinet, P. et al. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest. Radiol. 41, 313–324 (2006).

    Article  CAS  Google Scholar 

  114. Schulze, E. et al. Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Invest. Radiol. 30, 604–610 (1995).

    Article  CAS  Google Scholar 

  115. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  Google Scholar 

  116. DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Disc. 1, 54–67 (2011).

    Article  CAS  Google Scholar 

  117. Steidl, C. et al. Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N. Engl. J. Med. 362, 875–885 (2010).

    Article  CAS  Google Scholar 

  118. Mantovani, A. & Sica, A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231–237 (2010).

    Article  CAS  Google Scholar 

  119. Kircher, M. F., Mahmood, U., King, R. S., Weissleder, R. & Josephson, L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 63, 8122–8125 (2003).

    CAS  Google Scholar 

  120. Rainov, N. G. et al. Selective uptake of viral and monocrystalline particles delivered intra-arterially to experimental brain neoplasms. Hum. Gene Ther. 6, 1543–1552 (1995).

    Article  CAS  Google Scholar 

  121. Zimmer, C. et al. MR imaging of phagocytosis in experimental gliomas. Radiology 197, 533–538 (1995).

    Article  CAS  Google Scholar 

  122. Daldrup-Link, H. & Coussens, L. M. MR imaging of tumor-associated macrophages. Oncoimmunology 1, 507–509 (2012).

    Article  Google Scholar 

  123. Daldrup-Link, H. E. et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin. Cancer Res. 17, 5695–5704 (2011).

    Article  CAS  Google Scholar 

  124. Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).

    Article  Google Scholar 

  125. Harisinghani, M. G. & Weissleder, R. Sensitive, noninvasive detection of lymph node metastases. PLoS Med. 1, e66 (2004).

    Article  Google Scholar 

  126. Mouli, S. K., Zhao, L. C., Omary, R. A. & Thaxton, C. S. Lymphotropic nanoparticle enhanced MRI for the staging of genitourinary tumors. Nature Rev. Urol. 7, 84–93 (2010).

    Article  Google Scholar 

  127. Weissleder, R. et al. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175, 494–498 (1990).

    Article  CAS  Google Scholar 

  128. Weissleder, R. et al. MR lymphography: study of a high-efficiency lymphotrophic agent. Radiology 191, 225–230 (1994).

    Article  CAS  Google Scholar 

  129. Wunderbaldinger, P., Josephson, L., Bremer, C., Moore, A. & Weissleder, R. Detection of lymph node metastases by contrast-enhanced MRI in an experimental model. Magn. Reson. Med. 47, 292–297 (2002).

    Article  Google Scholar 

  130. Saokar, A. et al. Detection of lymph nodes in pelvic malignancies with computed tomography and magnetic resonance imaging. Clin. Imaging 34, 361–366 (2010).

    Article  Google Scholar 

  131. Heesakkers, R. A. et al. Prostate cancer: detection of lymph node metastases outside the routine surgical area with ferumoxtran-10-enhanced MR imaging. Radiology 251, 408–414 (2009).

    Article  Google Scholar 

  132. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

    Article  CAS  Google Scholar 

  133. Swirski, F. K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161–166 (2013).

    Article  CAS  Google Scholar 

  134. Winter, P. M. et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with αvβ3-integrin-targeted nanoparticles. Circulation 108, 2270–2274 (2003).

    Article  CAS  Google Scholar 

  135. McAteer, M. A. et al. A leukocyte-mimetic magnetic resonance imaging contrast agent homes rapidly to activated endothelium and tracks with atherosclerotic lesion macrophage content. Arterioscl. Throm. Vas. 32, 1427–1435 (2012).

    Article  CAS  Google Scholar 

  136. Nahrendorf, M. et al. Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscl. Throm. Vas. 29, 1444–1451 (2009).

    Article  CAS  Google Scholar 

  137. Lobatto, M. E., Fuster, V., Fayad, Z. A. & Mulder, W. J. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nature Rev. Drug Disc. 10, 835–852 (2011).

    Article  CAS  Google Scholar 

  138. Tang, T. Y. et al. The ATHEROMA (atorvastatin therapy: effects on reduction of macrophage activity) study: evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J. Am. Coll. Cardiol. 53, 2039–2050 (2009).

    Article  CAS  Google Scholar 

  139. Kooi, M. E. et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107, 2453–2458 (2003).

    Article  CAS  Google Scholar 

  140. Richards, J. M. et al. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide: a pilot study. Circ. Cardiovasc. Imaging 4, 274–281 (2011).

    Article  Google Scholar 

  141. Lipinski, M. J. et al. Macrophage-specific lipid-based nanoparticles improve cardiac magnetic resonance detection and characterization of human atherosclerosis. JACC Cardiovasc. Imaging 2, 637–647 (2009).

    Article  Google Scholar 

  142. Briley-Saebo, K. C. et al. Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. J. Am. Coll. Cardiol. 57, 337–347 (2011).

    Article  CAS  Google Scholar 

  143. Jaffer, F. A. et al. Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol. Imaging 5, 85–92 (2006).

    Article  Google Scholar 

  144. Amirbekian, V. et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc. Natl Acad. Sci. USA 104, 961–966 (2007).

    Article  CAS  Google Scholar 

  145. Majmudar, M. D. et al. Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ. Res. 112, 755–761 (2013).

    Article  CAS  Google Scholar 

  146. Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nature Med. 9, 123–128 (2003).

    Article  CAS  Google Scholar 

  147. Buxton, D. B. Molecular imaging of aortic aneurysms. Circ. Cardiovasc. Imaging 5, 392–399 (2012).

    Article  Google Scholar 

  148. Nahrendorf, M., Pittet, M. J. & Swirski, F. K. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121, 2437–2445 (2010).

    Article  Google Scholar 

  149. Sosnovik, D. E. et al. Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation 115, 1384–1391 (2007).

    Article  Google Scholar 

  150. Naresh, N. K. et al. Monocyte and/or macrophage infiltration of heart after myocardial infarction: MR imaging by using T1-shortening liposomes. Radiology 264, 428–435 (2012).

    Article  Google Scholar 

  151. Flogel, U. et al. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118, 140–148 (2008).

    Article  Google Scholar 

  152. Alam, S. R. et al. Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: early clinical experience. Circ. Cardiovasc. Imaging 5, 559–565 (2012).

    Article  Google Scholar 

  153. Yilmaz, A. et al. Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. Eur. Heart J. 34, 462–475 (2013).

    Article  CAS  Google Scholar 

  154. Tsujioka, H. et al. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J. Am. Coll. Cardiol. 54, 130–138 (2009).

    Article  Google Scholar 

  155. Wu, Y. L. et al. Noninvasive evaluation of cardiac allograft rejection by cellular and functional cardiac magnetic resonance. JACC Cardiovasc. Imaging 2, 731–741 (2009).

    Article  Google Scholar 

  156. Christen, T. et al. Molecular imaging of innate immune cell function in transplant rejection. Circulation 119, 1925–1932 (2009).

    Article  CAS  Google Scholar 

  157. Moon, H. et al. Noninvasive assessment of myocardial inflammation by cardiovascular magnetic resonance in a rat model of experimental autoimmune myocarditis. Circulation 125, 2603–2612 (2012).

    Article  Google Scholar 

  158. Denis, M. C., Mahmood, U., Benoist, C., Mathis, D. & Weissleder, R. Imaging inflammation of the pancreatic islets in type 1 diabetes. Proc. Natl Acad. Sci. USA 101, 12634–12639 (2004).

    Article  CAS  Google Scholar 

  159. Turvey, S. E. et al. Noninvasive imaging of pancreatic inflammation and its reversal in type 1 diabetes. J. Clin. Invest. 115, 2454–2461 (2005).

    Article  CAS  Google Scholar 

  160. Gaglia, J. L. et al. Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J. Clin. Invest. 121, 442–445 (2011).

    Article  CAS  Google Scholar 

  161. Fu, W., Wojtkiewicz, G., Weissleder, R., Benoist, C. & Mathis, D. Early window of diabetes determinism in NOD mice, dependent on the complement receptor CRIg, identified by noninvasive imaging. Nature Immunol. 13, 361–368 (2012).

    Article  CAS  Google Scholar 

  162. Binstadt, B. A. et al. Particularities of the vasculature can promote the organ specificity of autoimmune attack. Nature Immunol. 7, 284–292 (2006).

    Article  CAS  Google Scholar 

  163. Dames, P. et al. Targeted delivery of magnetic aerosol droplets to the lung. Nature Nanotech. 2, 495–499 (2007).

    Article  Google Scholar 

  164. Stoll, G. & Bendszus, M. New approaches to neuroimaging of central nervous system inflammation. Curr. Opin. Neurol. 23, 282–286 (2010).

    Article  Google Scholar 

  165. Mueggler, T. et al. MRI signature in a novel mouse model of genetically induced adult oligodendrocyte cell death. Neuroimage 59, 1028–1036 (2012).

    Article  Google Scholar 

  166. Tourdias, T. et al. Assessment of disease activity in multiple sclerosis phenotypes with combined gadolinium- and superparamagnetic iron oxide-enhanced MR imaging. Radiology 264, 225–233 (2012).

    Article  Google Scholar 

  167. Hasan, D. et al. Early change in ferumoxytol-enhanced magnetic resonance imaging signal suggests unstable human cerebral aneurysm: a pilot study. Stroke 43, 3258–3265 (2012).

    Article  Google Scholar 

  168. Karussis, D. et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch. Neurol. 67, 1187–1194 (2010).

    Article  Google Scholar 

  169. Bulte, J. W. In vivo MRI cell tracking: clinical studies. Am. J. Roentgenol. 193, 314–325 (2009).

    Article  Google Scholar 

  170. Barnett, B. P. et al. Synthesis of magnetic resonance-, X-ray- and ultrasound-visible alginate microcapsules for immunoisolation and noninvasive imaging of cellular therapeutics. Nature Protoc. 6, 1142–1151 (2011).

    Article  CAS  Google Scholar 

  171. Evgenov, N. V., Medarova, Z., Dai, G., Bonner-Weir, S. & Moore, A. In vivo imaging of islet transplantation. Nature Med. 12, 144–148 (2006).

    Article  CAS  Google Scholar 

  172. Heyn, C. et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn. Reson. Med. 56, 1001–1010 (2006).

    Article  Google Scholar 

  173. Lewin, M. et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnol. 18, 410–414 (2000).

    Article  CAS  Google Scholar 

  174. Thu, M. S. et al. Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nature Med. 18, 463–467 (2012).

    Article  CAS  Google Scholar 

  175. Ornberg, R. L. & Liu, H. Immunofluorescent labeling of proteins in cultured cells with quantum dot secondary antibody conjugates. Methods Mol. Biol. 374, 3–10 (2007).

    CAS  Google Scholar 

  176. Bulte, J. W. Science to practice: Can macrophage infiltration serve as a surrogate marker for stem cell viability? Radiology 264, 619–620 (2012).

    Article  Google Scholar 

  177. Nabiev, I. et al. Nonfunctionalized nanocrystals can exploit a cell's active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett. 7, 3452–3461 (2007).

    Article  CAS  Google Scholar 

  178. Clift, M. J., Brandenberger, C., Rothen-Rutishauser, B., Brown, D. M. & Stone, V. The uptake and intracellular fate of a series of different surface coated quantum dots in vitro. Toxicology 286, 58–68 (2011).

    Article  CAS  Google Scholar 

  179. Awaad, A., Nakamura, M. & Ishimura, K. Imaging of size-dependent uptake and identification of novel pathways in mouse Peyer's patches using fluorescent organosilica particles. Nanomedicine 8, 627–636 (2012).

    Article  CAS  Google Scholar 

  180. Gradishar, W. J. et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23, 7794–7803 (2005).

    Article  CAS  Google Scholar 

  181. Kelly, K. A. et al. Unbiased discovery of in vivo imaging probes through in vitro profiling of nanoparticle libraries. Integr. Biol. 1, 311–317 (2009).

    Article  CAS  Google Scholar 

  182. Enochs, W. S., Harsh, G., Hochberg, F. & Weissleder, R. Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J. Magn. Reson. Imaging 9, 228–232 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Institutes of Health for supporting this research through the National Cancer Institute Centers of Cancer Nanotechnology Excellence consortia and the National Heart Lung and Blood Institute Program of Excellence in Nanotechnology consortia. We especially would like to thank our collaborators and members of Chemical Safety Board for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Weissleder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weissleder, R., Nahrendorf, M. & Pittet, M. Imaging macrophages with nanoparticles. Nature Mater 13, 125–138 (2014). https://doi.org/10.1038/nmat3780

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3780

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing