Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermoelectric imaging of structural disorder in epitaxial graphene


Heat is a familiar form of energy transported from a hot side to a colder side of an object, but not a notion associated with microscopic measurements of electronic properties. A temperature difference within a material causes charge carriers, electrons or holes to diffuse along the temperature gradient inducing a thermoelectric voltage. Here we show that local thermoelectric measurements can yield high-sensitivity imaging of structural disorder on the atomic and nanometre scales. The thermopower measurement acts to amplify the variations in the local density of states at the Fermi level, giving high differential contrast in thermoelectric signals. Using this imaging technique, we uncovered point defects in the first layer of epitaxial graphene, which generate soliton-like domain-wall line patterns separating regions of the different interlayer stacking of the second graphene layer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Thermoelectric imaging and its application to epitaxial graphene.
Figure 2: Evolution of strain-response patterns in epitaxial graphene.
Figure 3: Thermoelectric imaging at the atomic scale.
Figure 4: Local defect investigation by thermoelectric imaging.
Figure 5: Spectroscopic measurements of the thermoelectric voltage from various graphene samples as a function of applied temperature difference.


  1. 1

    Freund, L. B. & Suresh, S. Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge Univ. Press, 2004).

    Google Scholar 

  2. 2

    Ziman, J. M. Electrons and Phonons 220–256 (Oxford Univ. Press, 1960).

    Google Scholar 

  3. 3

    Stroscio, J. A. & Kaiser, W. J. (eds) in Scanning Tunneling Microscopy (Academic, 1993).

  4. 4

    Lin, Y-M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2008).

    Article  Google Scholar 

  5. 5

    Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203–207 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 5, 26–41 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Schmidt, D. A., Ohta, T. & Beechem, T. E. Strain and charge carrier coupling in epitaxial graphene. Phys. Rev. B 84, 235422 (2011).

    Article  Google Scholar 

  8. 8

    Ferralis, N., Maboudian, R. & Carraro, C. Evidence of structural strain in epitaxial graphene layers on 6H–SiC(0001). Phys. Rev. Lett. 101, 156801 (2008).

    Article  Google Scholar 

  9. 9

    Warner, J. H. et al. Dislocation-driven deformations in graphene. Science 337, 209–212 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Yazyev, O. V. & Louie, S. G. Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B 81, 195420 (2010).

    Article  Google Scholar 

  11. 11

    Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Phys. 6, 30–33 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Klimov, N. N. et al. Electromechanical properties of graphene drumheads. Science 336, 1557–1561 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Reddy, P., Jang, S-Y., Segalman, R. A. & Majumdar, A. Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Mahan, G. D. & Sofo, J. O. The best thermoelectric. Proc. Natl Acad. Sci. USA 93, 7436–7439 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Stovneng, J. A. & Lipavsky, P. Thermopower in scanning-tunneling-microscope experiments. Phys. Rev. B 42, 9214–9216 (1990).

    CAS  Article  Google Scholar 

  16. 16

    Lyeo, H-K. et al. Profiling the thermoelectric power of semiconductor junctions with nanometer resolution. Science 303, 816–818 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Hoffmann, D., Grand, J. Y., Möller, R., Rettenberger, A. & Läuger, K. Thermovoltage across a vacuum barrier investigated by scanning tunneling microscopy: Imaging of standing electron waves. Phys. Rev. B 52, 13796–13798 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Bian, Z. et al. Three-dimensional modeling of nanoscale Seebeckmeasurements by scanning thermoelectric microscopy. Appl. Phys. Lett. 87, 053115 (2005).

    Article  Google Scholar 

  19. 19

    Gunther, C., Vrijmoeth, J., Hwang, R. Q. & Behm, R. J. Strain relaxation in hexagonally close-packed metal-metal interfaces. Phys. Rev. Lett. 74, 754–757 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Lundgren, E., Stanka, B., Schmid, M. & Varga, P. Thin films of Co on Pt(111): Strain relaxation and growth. Phys. Rev. B 62, 2843–2851 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Bao, W. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nature Phys. 7, 948–952 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Lui, C. H., Li, Z., Mak, K. F., Cappelluti, E. & Heinz, T. F. Observation of an electrically tunable band gap in trilayer graphene. Nature Phys. 7, 944–947 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Choi, J. S. et al. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene. Science 333, 607–610 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Hibino, H., Mizuno, S., Kageshima, H., Nagase, M. & Yamaguchi, H. Stacking domains of epitaxial few-layer graphene on SiC(0001). Phys. Rev. B 80, 085406 (2009).

    Article  Google Scholar 

  25. 25

    Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. Preprint at (2013).

  26. 26

    Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Hicks, L. D. & Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631–16634 (1993).

    CAS  Article  Google Scholar 

  28. 28

    Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Rutter, G. M. et al. Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy. Phys. Rev. B 76, 235416 (2007).

    Article  Google Scholar 

  30. 30

    Gotsmann, B. & Lantz, M. A. Quantized thermal transport across contacts of rough surfaces. Nature Mater. 12, 59–65 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).

    CAS  Article  Google Scholar 

  32. 32

    Hao, L. & Lee, T. K. Thermopower of gapped bilayer graphene. Phys. Rev. B 81, 165445 (2010).

    Article  Google Scholar 

  33. 33

    Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).

    Article  Google Scholar 

  34. 34

    Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nature Mater. 6, 770–775 (2007).

    CAS  Article  Google Scholar 

Download references


We thank Y. Kuk for helpful comments. W. Kim thanks H-K. Lee and B-G. Park for their support in the experiments at Pohang Light Source II. This work was supported by the Converging Research Center Program of MEST (2012K001307) and the MEST-US Air Force Cooperation Program of NRF/MEST (2010-00303). The work at KAIST was supported by the WCU (R31-2008-000-10071-0) and NRF (2012-046191) programmes of MEST.

Author information




S.C., S.D.K. and H-K.L. performed the experiments, collected and analysed the data, and prepared the manuscript. W.K., I.K., T.Z. and J.A.S. prepared and characterized the samples. E-S.L., S-J.W., K-J.K. and Y-H.K. conducted the calculations. H-D.K. and I.K. carried out the ARPES measurements. H-K.L. and Y-H.K. administrated the research. H-K.L., Y-H.K. and J.A.S. edited the manuscript.

Corresponding authors

Correspondence to Yong-Hyun Kim or Ho-Ki Lyeo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 953 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cho, S., Kang, S., Kim, W. et al. Thermoelectric imaging of structural disorder in epitaxial graphene. Nature Mater 12, 913–918 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing