Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Band alignment of rutile and anatase TiO2



The most widely used oxide for photocatalytic applications owing to its low cost and high activity is TiO2. The discovery of the photolysis of water on the surface of TiO2 in 19721 launched four decades of intensive research into the underlying chemical and physical processes involved2,3,4,5. Despite much collected evidence, a thoroughly convincing explanation of why mixed-phase samples of anatase and rutile outperform the individual polymorphs has remained elusive6. One long-standing controversy is the energetic alignment of the band edges of the rutile and anatase polymorphs of TiO2 (ref. 7). We demonstrate, through a combination of state-of-the-art materials simulation techniques and X-ray photoemission experiments, that a type-II, staggered, band alignment of ~ 0.4 eV exists between anatase and rutile with anatase possessing the higher electron affinity, or work function. Our results help to explain the robust separation of photoexcited charge carriers between the two phases and highlight a route to improved photocatalysts.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Two proposed valence and conduction band alignment mechanisms for the anatase/rutile interface.
Figure 2: Electronic structure of anatase and rutile TiO2.
Figure 3: Band alignment between rutile and anatase from XPS and QM/MM.


  1. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    CAS  Article  Google Scholar 

  2. Dunnill, C. W. et al. Nanoparticulate silver coated-titania thin films-Photo-oxidative destruction of stearic acid under different light sources and antimicrobial effects under hospital lighting conditions. J. Photochem. Photobiol. A 220, 113–123 (2011).

    CAS  Article  Google Scholar 

  3. Gratzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    CAS  Article  Google Scholar 

  4. Khan, S. U. M., Al-Shahry, M. & Ingler, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2 . Science 297, 2243–2245 (2002).

    CAS  Article  Google Scholar 

  5. Yang, H. G. et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638–641 (2008).

    CAS  Article  Google Scholar 

  6. Li, G. H. & Gray, K. A. The solid-solid interface: Explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem. Phys. 339, 173–187 (2007).

    CAS  Article  Google Scholar 

  7. Deak, P., Aradi, B. & Frauenheim, T. Band lineup and charge carrier separation in mixed rutile-anatase systems. J. Phys. Chem. C 115, 3443–3446 (2011).

    CAS  Article  Google Scholar 

  8. Kavan, L., Gratzel, M., Gilbert, S. E., Klemenz, C. & Scheel, H. J. Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118, 6716–6723 (1996).

    CAS  Article  Google Scholar 

  9. Kawahara, T. et al. A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: Effect of the anatase/rutile junction on the photocatalytic activity. Angew. Chem. Int. Ed. 41, 2811–2813 (2002).

    CAS  Article  Google Scholar 

  10. Miyagi, T., Kamei, M., Mitsuhashi, T., Ishigaki, T. & Yamazaki, A. Charge separation at the rutile/anatase interface: A dominant factor of photocatalytic activity. Chem. Phys. Lett. 390, 399–402 (2004).

    CAS  Article  Google Scholar 

  11. Nakajima, H., Mori, T., Shen, Q. & Toyoda, T. Photoluminescence study of mixtures of anatase and rutile TiO2 nanoparticles: Influence of charge transfer between the nanoparticles on their photo luminescence excitation bands. Chem. Phys. Lett. 409, 81–84 (2005).

    CAS  Article  Google Scholar 

  12. Xiong, G. et al. Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals. Adv. Funct. Mater 17, 2133–2138 (2007).

    CAS  Article  Google Scholar 

  13. Hurum, D. C. et al. Probing reaction mechanisms in mixed phase TiO2 by EPR. J. Electron Spectrosc. 150, 155–163 (2006).

    CAS  Article  Google Scholar 

  14. Hurum, D. C., Agrios, A. G., Gray, K. A., Rajh, T. & Thurnauer, M. C. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107, 4545–4549 (2003).

    CAS  Article  Google Scholar 

  15. Hurum, D. C., Gray, K. A., Rajh, T. & Thurnauer, M. C. Recombination pathways in the Degussa P25 formulation of TiO2: Surface versus lattice mechanisms. J. Phys. Chem. B 109, 977–980 (2005).

    CAS  Article  Google Scholar 

  16. Leytner, S. & Hupp, J. T. Evaluation of the energetics of electron trap states at the nanocrystalline titanium dioxide/aqueous solution interface via time-resolved photoacoustic spectroscopy. Chem. Phys. Lett. 330, 231–236 (2000).

    CAS  Article  Google Scholar 

  17. Kresse, G. & Hafner, J. Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    CAS  Article  Google Scholar 

  18. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).

    Article  Google Scholar 

  19. Madelung, E. The electric field in systems of regularly arranged point charges. Phys. Z 19, 524–533 (1918).

    Google Scholar 

  20. Dick, B. G. & Overhauser, A. W. Theory of the dielectric constants of alkali halide crystals. Phys. Rev. 112, 90–103 (1958).

    CAS  Article  Google Scholar 

  21. Catlow, C. R. A. et al. Advances in computational studies of energy materials. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 368, 3379–3456 (2010).

    CAS  Article  Google Scholar 

  22. Wang, J. et al. Measurement of wurtzite ZnO/rutile TiO2 heterojunction band offsets by X-ray photoelectron spectroscopy. Appl. Phys. A 103, 1099–1103 (2011).

    CAS  Article  Google Scholar 

  23. Sokol, A. A., Bromley, S. T., French, S. A., Catlow, C. R. A. & Sherwood, P. Hybrid QM/MM embedding approach for the treatment of localized surface states in ionic materials. Int. J. Quantum Chem. 99, 695–712 (2004).

    CAS  Article  Google Scholar 

  24. Sherwood, P. et al. QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis. J. Mol. Struct.-Theochem. 632, 1–28 (2003).

    CAS  Article  Google Scholar 

  25. Cheng, J. & Sprik, M. Aligning electronic energy levels at the TiO2/H2O interface. Phys. Rev. B 82, 081406 (2010).

    Article  Google Scholar 

  26. Swank, R. K. Surface properties of 2–6 compounds. Phys. Rev. 153, 844–849 (1967).

    CAS  Article  Google Scholar 

  27. Sokol, A. A. et al. Point defects in ZnO. Faraday Discuss. 134, 267–282 (2007).

    CAS  Article  Google Scholar 

  28. Grant, R. W., Kraut, E. A., Kowalczyk, S. P. & Waldrop, J. R. Measurement of potential at semiconductor interfaces by electron-spectroscopy. J. Vac. Sci. Technol. B 1, 320–327 (1983).

    CAS  Article  Google Scholar 

  29. Kraut, E. A., Grant, R. W., Waldrop, J. R. & Kowalczyk, S. P. Semiconductor core-level to valence-band maximum binding-energy differences—precise determination by X-ray photoelectron-spectroscopy. Phys. Rev. B 28, 1965–1977 (1983).

    CAS  Article  Google Scholar 

  30. Waldrop, J. R., Kowalczyk, S. P., Grant, R. W., Kraut, E. A. & Miller, D. L. XPS measurement of GaAs-AlAs heterojunction band discontinuities—growth sequence dependence. J. Vac. Sci. Technol. 19, 573–575 (1981).

    CAS  Article  Google Scholar 

Download references


The work presented here made use of the UCL Legion HPC Facility, the IRIDIS cluster provided by the EPSRC-funded Centre for Innovation (EP/K000144/1 and EP/K000136/1), and the HECToR supercomputer through our membership of the UK’s HPC Materials Chemistry Consortium, which is funded by EPSRC grant EP/F067496. The work in Dublin was supported by SFI through the PI programme (PI grant numbers 06/IN.1/I92 and 06/IN.1/I92/EC07), and made use of the Kelvin supercomputer as maintained by TCHPC. A.W. acknowledges support from the Royal Society for a University Research Fellowship and EU-FP7 under grant agreement 316494. D.O.S. and C.W.D. are grateful to the Ramsay Memorial Trust and University College London for the provision of their Ramsay Fellowships. D.O.S., R.G.P. and A.W. acknowledge membership of the Materials Design Network.

Author information

Authors and Affiliations



D.O.S. wrote the manuscript with input from A.W. and A.A.S. D.O.S. and A.A.S. designed the computational experiments. C.W.D., M.J.P., R.G.P. and I.P.P. designed and performed the sample growth and XPS experiments. A.A.S., S.M.W. and C.R.A.C. calculated and analysed the band offsets using the method of interatomic potentials, D.O.S., S.A.S. and G.W.W. performed and analysed the periodic DFT calculations, and J.B., A.J.L., A.A.S., T.W.K. and P.S. developed, performed and analysed the QM/MM alignments. All authors contributed to the scientific discussion and edited the manuscript.

Corresponding authors

Correspondence to David O. Scanlon or John Buckeridge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 844 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scanlon, D., Dunnill, C., Buckeridge, J. et al. Band alignment of rutile and anatase TiO2. Nature Mater 12, 798–801 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing