Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain

Abstract

Multiferroics are compounds that show ferroelectricity and magnetism. BiFeO3, by far the most studied, has outstanding ferroelectric properties, a cycloidal magnetic order in the bulk, and many unexpected virtues such as conductive domain walls or a low bandgap of interest for photovoltaics. Although this flurry of properties makes BiFeO3 a paradigmatic multifunctional material, most are related to its ferroelectric character, and its other ferroic property—antiferromagnetism—has not been investigated extensively, especially in thin films. Here we bring insight into the rich spin physics of BiFeO3 in a detailed study of the static and dynamic magnetic response of strain-engineered films. Using Mössbauer and Raman spectroscopies combined with Landau–Ginzburg theory and effective Hamiltonian calculations, we show that the bulk-like cycloidal spin modulation that exists at low compressive strain is driven towards pseudo-collinear antiferromagnetism at high strain, both tensile and compressive. For moderate tensile strain we also predict and observe indications of a new cycloid. Accordingly, we find that the magnonic response is entirely modified, with low-energy magnon modes being suppressed as strain increases. Finally, we reveal that strain progressively drives the average spin angle from in-plane to out-of-plane, a property we use to tune the exchange bias and giant-magnetoresistive response of spin valves.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mössbauer spectra for BFO films grown on various substrates.
Figure 2: Magnetic phase diagram of strained BFO films.
Figure 3: Low-energy Raman spectra for BFO films grown on various substrates.
Figure 4: Influence of strain on the spin angle, exchange bias and GMR.

References

  1. Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    Article  CAS  Google Scholar 

  2. Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).

    Article  CAS  Google Scholar 

  3. Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).

    Article  CAS  Google Scholar 

  4. Lee, J. H. et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 466, 954–958 (2010).

    Article  CAS  Google Scholar 

  5. Konishi, Y., Fang, Z., Izumi, M., Manako, T. & Kasai, M. Orbital-state-mediated phase-control of manganites. J. Phys. Soc. Jpn 68, 3790–3793 (1999).

    Article  CAS  Google Scholar 

  6. Marti, X. et al. Emergence of ferromagnetism in antiferromagnetic TbMnO3 by epitaxial strain. Appl. Phys. Lett. 96, 222505 (2010).

    Article  Google Scholar 

  7. Nogués, J. et al. Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005).

    Article  Google Scholar 

  8. Chappert, C., Fert, A. & Nguyen Van Dau, F. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    Article  CAS  Google Scholar 

  9. MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).

    Article  CAS  Google Scholar 

  10. Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nature Mater. 10, 347–351 (2011).

    Article  CAS  Google Scholar 

  11. Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, T. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3 . Nature 429, 850–853 (2004).

    Article  CAS  Google Scholar 

  12. Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

    Article  Google Scholar 

  13. Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).

    Article  CAS  Google Scholar 

  14. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  15. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  16. Crassous, A. et al. Nanoscale electrostatic manipulation of magnetic flux quanta in ferroelectric/superconductor BiFeO3/YBa2CuO7−δ heterostructures. Phys. Rev. Lett. 95, 247002 (2011).

    Article  Google Scholar 

  17. Yang, S. Y. et al. Photovoltaic effects in BiFeO3 . Appl. Phys. Lett. 95, 062909 (2009).

    Article  Google Scholar 

  18. Allibe, J. et al. Optical properties of integrated multiferroic BiFeO3 thin films for microwave applications. Appl. Phys. Lett. 96, 182902 (2010).

    Article  Google Scholar 

  19. Zeches, R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3 . Science 326, 977–980 (2009).

    Article  CAS  Google Scholar 

  20. Allibe, J. et al. Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3 . Nano Lett. 12, 1141–1145 (2012).

    Article  CAS  Google Scholar 

  21. Dho, J., Qi, X., Kim, H., MacManus-Driscoll, J. L. & Blamire, M. G. Large electric polarization and exchange bias in multiferroic BiFeO3 . Adv. Mater. 18, 1445–1448 (2006).

    Article  CAS  Google Scholar 

  22. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  CAS  Google Scholar 

  23. Rovillain, P. et al. Electric-field control of spin waves at room temperature in multiferroic BiFeO3 . Nature Mater. 9, 975–979 (2010).

    Article  CAS  Google Scholar 

  24. Sosnowska, I., Peterlin-Neumaier, T. & Steichele, E. Spiral magnetic ordering in bismuth ferrite. J. Phys. C 15, 4835–4846 (1982).

    Article  CAS  Google Scholar 

  25. Bai, F. et al. Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitaxial constraint: Enhanced polarization and release of latent magnetization. Appl. Phys. Lett. 86, 032511 (2005).

    Article  Google Scholar 

  26. Béa, H., Bibes, M., Petit, S., Kreisel, J. & Barthélémy, A. Structural distortion and magnetism of BiFeO3 epitaxial thin films: A Raman spectroscopy and neutron diffraction study. Phil. Mag. Lett. 87, 165–174 (2007).

    Article  Google Scholar 

  27. Ke, X. et al. Magnetic structure of epitaxial multiferroic BiFeO3 films with engineered ferroelectric domains. Phys. Rev. B 82, 134448 (2010).

    Article  Google Scholar 

  28. Infante, I. et al. Bridging multiferroic phase transitions by epitaxial strain in BiFeO3 . Phys. Rev. Lett. 105, 057601 (2010).

    Article  CAS  Google Scholar 

  29. Lebeugle, D. et al. Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B 76, 024116 (2007).

    Article  Google Scholar 

  30. Daumont, C. et al. Strain dependence of polarization and piezoelectric response in epitaxial BiFeO3 thin films. J. Phys. Condens. Matter 24, 162202 (2012).

    Article  CAS  Google Scholar 

  31. Ramazanoglu, M. et al. Temperature-dependent properties of the magnetic order in single-crystal BiFeO3 . Phys. Rev. B 83, 174434 (2011).

    Article  Google Scholar 

  32. Sosnowska, I. & Zvezdin, A. K. Origin of the long period magnetic ordering in BiFeO3 . J. Magn. Magn. Mater. 140–144, 167–168 (1995).

    Article  Google Scholar 

  33. Rahmedov, D., Wang, D., Íñiguez, J. & Bellaiche, L. Magnetic cycloid of BiFeO3 from atomistic simulations. Phys. Rev. Lett. 109, 037207 (2012).

    Article  CAS  Google Scholar 

  34. Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).

    Article  Google Scholar 

  35. Albrecht, D. et al. Ferromagnetism in multiferroic BiFeO3 films: A first-principles-based study. Phys. Rev. B 81, 140401 (2010).

    Article  Google Scholar 

  36. Cazayous, M. et al. Possible observation of cycloidal electromagnons in BiFeO3 . Phys. Rev. Lett. 101, 037601 (2008).

    Article  CAS  Google Scholar 

  37. Wang, D., Weerasinghe, J. & Bellaiche, L. Atomistic molecular dynamic simulations of multiferroics. Phys. Rev. Lett. 109, 067203 (2012).

    Article  Google Scholar 

  38. Béa, H. et al. Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. Phys. Rev. Lett. 100, 017204 (2008).

    Article  Google Scholar 

  39. Martin, L. W. et al. Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8, 2050–2055 (2008).

    Article  CAS  Google Scholar 

  40. Malozemoff, A. P. Random-field model of exchange anisotropy at rough ferromagnetic–antiferromagnetic interfaces. Phys. Rev. B 35, 3679–3682 (1987).

    Article  CAS  Google Scholar 

  41. Biegalski, M. D. et al. Strong strain dependence of ferroelectric coercivity in a BiFeO3 film. Appl. Phys. Lett. 98, 142902 (2011).

    Article  Google Scholar 

  42. Béa, H. et al. Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl. Phys. Lett. 87, 072508 (2005).

    Article  Google Scholar 

  43. Juraszek, J., Zivotsky, O., Chiron, H., Vaudolon, C. & Teillet, J. A setup combining magneto-optical Kerr effect and conversion electron Mössbauer spectrometry for analysis of the near-surface magnetic properties of thin films. Rev. Sci. Instrum. 80, 043905 (2009).

    Article  CAS  Google Scholar 

  44. Zvezdin, A. K. & Pyatakov, A. P. Flexomagnetoelectric effect in bismuth ferrite. Phys. Stat. Solidi B 246, 1956–1960 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to D. Colson for providing the 57Fe-enriched target and to P. Bonville, M. A. Méasson, Y. Gallais and S. W. Cheong for stimulating discussions. Financial support from the French Ministère de l’Enseignement Supérieur et de la Recherche, the French Agence Nationale de la Recherche (ANR) through projects NOMILOPS and MULTIDOLLS and the Russian Foundation for Basic Research is acknowledged. D.R. and L.B. thank mostly the support of NSF. They also acknowledge DOE, ARO and ONR for discussions with scientists sponsored by these agencies.

Author information

Authors and Affiliations

Authors

Contributions

M.B., A.B., B.D. and D.S. conceived the study. D.S., C.C., E.J., C.D. and I.C.I. prepared the samples. The samples were characterized by X-ray diffraction (D.S., C.C., B.D. and I.C.I), atomic force microscopy (D.S., C.C., I.C.I. and S.F.) and piezoresponse force microscopy (I.C.I. and S.F.). A.A., J.J. and J-M.L.B. performed the Mössbauer spectroscopy measurements and analysed the results. J.L., P.R., C.T., A.S. and M.C. performed the Raman spectroscopy measurements and analysed the results. I.C.I. and M.B. carried out magnetometry and magnetotransport measurements on the samples. A.P.P. and A.K.Z. conducted the Landau–Ginzburg calculations and D.R., S.L., D.W. and L.B. carried out Heff calculations. M.B., J.J., A.P.P., A.K.Z. and D.S. wrote the manuscript. All authors contributed to the manuscript and the interpretation of the data.

Corresponding author

Correspondence to M. Bibes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1153 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sando, D., Agbelele, A., Rahmedov, D. et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nature Mater 12, 641–646 (2013). https://doi.org/10.1038/nmat3629

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3629

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing