Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extremely high electron mobility in a phonon-glass semimetal

This article has been updated

Abstract

The electron mobility is one of the key parameters that characterize the charge-carrier transport properties of materials, as exemplified by the quantum Hall effect1 as well as high-efficiency thermoelectric and solar energy conversions2,3. For thermoelectric applications, introduction of chemical disorder is an important strategy for reducing the phonon-mediated thermal conduction, but is usually accompanied by mobility degradation. Here, we show a multilayered semimetal β-CuAgSe overcoming such a trade-off between disorder and mobility. The polycrystalline ingot shows a giant positive magnetoresistance and Shubnikov de Haas oscillations, indicative of a high-mobility small electron pocket derived from the Ag s-electron band. Ni doping, which introduces chemical and lattice disorder, further enhances the electron mobility up to 90,000 cm2 V−1 s−1 at 10 K, leading not only to a larger magnetoresistance but also a better thermoelectric figure of merit. This Ag-based layered semimetal with a glassy lattice is a new type of promising thermoelectric material suitable for chemical engineering.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structure and transport properties.
Figure 2: GMR and Hall resistance.
Figure 3: Two-carrier model analyses for the conductivity tensors.
Figure 4: Experimental and theoretical characterization of conduction electrons.

Change history

  • 29 April 2013

    In the version of this Letter originally published online, the present address of the author J. S. Lee was not included; it should have read 'Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea'. This error has been corrected in all versions of the Letter.

References

  1. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  2. Mahan, G., Sales, B. & Sharp, J. Thermoelectric materials: New approaches to an old problem. Phys. Today 50, 42–47 (March, 1997).

    Article  CAS  Google Scholar 

  3. Shah, A. V. et al. Thin-film silicon solar cell technology. Prog. Photovolt. 12, 113–142 (2004).

    Article  CAS  Google Scholar 

  4. Kapitza, P. L. Bismuth crystals and its change in strong the study of the specific resistance of magnetic fields and some allied problems. Proc. R. Soc. Lond. A 119, 358–443 (1928).

    Article  CAS  Google Scholar 

  5. Xu, R. et al. Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390, 57–60 (1997).

    Article  CAS  Google Scholar 

  6. Husmann, A. et al. Megagauss sensors. Nature 417, 421–424 (2002).

    Article  CAS  Google Scholar 

  7. Parish, M. M. & Littlewood, P. B. Classical magnetotransport of inhomogeneous conductors. Phys. Rev. B 72, 094417 (2005).

    Article  Google Scholar 

  8. Herring, C. Effect of random inhomogeneities on electrical and galvanomagnetic measurements. J. Appl. Phys. 31, 1939–1953 (1960).

    Article  Google Scholar 

  9. Abrikosov, A. A. Quantum linear magnetoresistance. Phys. Rev. B 58, 2788–2794 (1998).

    Article  CAS  Google Scholar 

  10. Lee, M., Rosenbaum, T. F., Saboungi, M-L. & Schnyders, H. S. Band-gap tuning and linear magnetoresistance in the silver chalcogenides. Phys. Rev. Lett. 88, 066602 (2002).

    Article  CAS  Google Scholar 

  11. Fang, C. M., de Groot, R. A. & Wiegers, G. A. Ab initio band structure calculations of the low-temperature phases of Ag2Se. J. Phys. Chem. Solids 63, 457–464 (2002).

    Article  CAS  Google Scholar 

  12. Wang, X-L, Dou, S. X. & Zhang, C. Zero-gap materials for future spintronics, electronics and optics. NPG Asia Mater. 2, 31–38 (2010).

    Article  CAS  Google Scholar 

  13. Friedman, A. L. et al. Quantum linear magnetoresistance in multilayer epitaxial graphene. Nano Lett. 10, 3962–3965 (2010).

    Article  CAS  Google Scholar 

  14. Wang, X., Du, Y., Dou, S. & Zhang, C. Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets. Phys. Rev. Lett. 108, 266806 (2012).

    Article  Google Scholar 

  15. Thio, T. et al. Giant magnetoresistance in zero-band-gap Hg1−xCdxTe. Phys. Rev. B 57, 12239–12244 (1998).

    Article  CAS  Google Scholar 

  16. Solin, S. A., Thio, T., Hines, D. R. & Heremans, J. J. Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors. Science 289, 1530–1532 (2000).

    Article  CAS  Google Scholar 

  17. Hu, J. & Rosenbaum, T. F. Classical and quantum routes to linear magnetoresistance. Nature Mater. 7, 697–700 (2008).

    Article  CAS  Google Scholar 

  18. Heremans, J. P. et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008).

    Article  CAS  Google Scholar 

  19. Miyatani, S. Electronic and ionic conduction in (Ag1−xCux)2Se. J. Phys. Soc. Jpn 34, 423–432 (1973).

    Article  CAS  Google Scholar 

  20. Conn, J. B. & Taylor, R. C. Thermoelectric and crystallographic properties of Ag2Se. J. Electrochem. Soc. 107, 977–982 (1960).

    Article  CAS  Google Scholar 

  21. Ferhat, M. & Nagao, J. Thermoelectric and transport properties of Ag2Se compounds. J. Appl. Phys. 88, 813–816 (2000).

    Article  CAS  Google Scholar 

  22. Liu, H. et al. Copper ion liquid-like thermoelectrics. Nature Mater. 11, 422–425 (2012).

    Article  Google Scholar 

  23. De Yoreo, J. J., Knaak, W., Meissner, M. & Pohl, R. O. Low-temperature properties of crystalline (KBr)1−x(KCN)x: A model glass. Phys. Rev. B 34, 8828–8842 (1986).

    Article  CAS  Google Scholar 

  24. Takahashi, H., Okazaki, R., Yasui, Y. & Terasaki, I. Low-temperature magnetotransport of the narrow-gap semiconductor FeSb2 . Phys. Rev. B 84, 205215 (2011).

    Article  Google Scholar 

  25. Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).

    Book  Google Scholar 

  26. Frueh, A. J., Czamanke, G. K. & Knight, C. H. The crystallography of eucairite, CuAgSe. Z. Kristallogr. 108, 389–396 (1957).

    Article  CAS  Google Scholar 

  27. Ramasesha, S. A phenomenological model for semiconductor–metal transition in mixed conductors. J. Solid State Chem. 41, 333–337 (1982).

    Article  CAS  Google Scholar 

  28. Fortner, J., Saboungi, M-L. & Enderby, J. E. Carrier density enhancement in semiconducting NaSn and CsPb. Phys. Rev. Lett. 74, 1415–1418 (1995).

    Article  CAS  Google Scholar 

  29. Slack, G. A. in CRC Handbook of Thermoelectrics (ed. Rowe, M.) 407–440 (CRC, 1995).

    Google Scholar 

  30. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Mater. 7, 105–114 (2008).

    Article  CAS  Google Scholar 

  31. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. & Luitz, J. WIEN2K package, Version 10.1, http://www.wien2k.at.

  32. Tran, F. & Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank D. Okuyama and T. Arima for experimental support and thank J. G. Checkelsky, A. Tsukazaki, F. Kagawa and N. Kanazawa for useful comments. This study was in part supported by a Grant-in-Aid for Scientific Research (Grant No. 23685014) from the MEXT, and by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program), Japan.

Author information

Authors and Affiliations

Authors

Contributions

S.I. and Y. Tokura conceived the study and wrote the paper. S.I. prepared the samples and performed the transport measurements. Y.S. and M.U. designed the thermoelectric measurement systems. T.S. and Y. Taguchi performed thermoelectric measurements at high temperatures. J.S.L. worked on the optical study. M.S.B. and R.A. performed band calculations.

Corresponding author

Correspondence to S. Ishiwata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 300 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ishiwata, S., Shiomi, Y., Lee, J. et al. Extremely high electron mobility in a phonon-glass semimetal. Nature Mater 12, 512–517 (2013). https://doi.org/10.1038/nmat3621

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3621

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing