Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical excitation of Josephson plasma solitons in a cuprate superconductor

Abstract

Josephson plasma waves are linear electromagnetic modes that propagate along the planes of cuprate superconductors, sustained by interlayer tunnelling supercurrents. For strong electromagnetic fields, as the supercurrents approach the critical value, the electrodynamics become highly nonlinear. Josephson plasma solitons (JPSs) are breather excitations predicted in this regime, bound vortex–antivortex pairs that propagate coherently without dispersion. We experimentally demonstrate the excitation of a JPS in La1.84Sr0.16CuO4, using intense narrowband radiation from an infrared free-electron laser tuned to the 2-THz Josephson plasma resonance. The JPS becomes observable as it causes a transparency window in the opaque spectral region immediately below the plasma resonance. Optical control of magnetic-flux-carrying solitons may lead to new applications in terahertz-frequency plasmonics, in information storage and transport and in the manipulation of high-Tc superconductivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Calculated space- and time-dependent interlayer phase for φz(x,t) for two pump wavelengths above resonance.
Figure 2: Calculated space- and time-dependent interlayer phase for φz(x,t) for ωFEL = 0.97ωJPR and four pump intensities: 9 V cm−1, 38 kV cm−1, 39 kV cm−1, 42 kV cm−1.
Figure 3: Pictorial representation of a JPS as it propagates at four time delays.
Figure 4: Equilibrium optical properties of La1.84Sr0.16CuO4.
Figure 5: Time-dependent optical properties of La1.84Sr0.16CuO4 for three excitation frequencies.
Figure 6: Perturbed loss functions.

References

  1. 1

    Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Tobey, R. I., Prabhakaran, D., Boothroyd, A. T. & Cavalleri, A. Ultrafast electronic phase transition in La1/2Sr3/2MnO4 by coherent vibrational excitation: Evidence for nonthermal melting of orbital order. Phys. Rev. Lett. 101, 197404 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Caviglia, A. D. et al. Ultrafast strain engineering in complex oxide heterostructures. Phys. Rev. Lett. 108, 136801 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nature Phys. 7, 854 (2011).

    Article  Google Scholar 

  6. 6

    Först, M. et al. Driving magnetic order in a manganite by ultrafast lattice excitation. Phys. Rev. B 84, 241104(R) (2011).

    Article  Google Scholar 

  7. 7

    Liu, M. et al. THz field induced insulator to metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Dienst, A. et al. Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor. Nature Photon. 5, 485–488 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Lawrence, W. E. & Doniach, S. in Proc. 12th Int. Conf. Low Temp. Phys. (ed. Kanda, E.) 361–362 (Tokyo Keigaku Publishing, 1971).

    Google Scholar 

  10. 10

    Kleiner, R., Steinmeyer, F., Kunkel, G. & Muller, P. Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single-crystals. Phys. Rev. Lett. 68, 2394–2397 (1992).

    CAS  Article  Google Scholar 

  11. 11

    Tsui, O. K. C., Ong, N. P., Matsuda, Y., Yan, Y. F. & Peterson, J. B. Sharp magnetoabsorption resonances in the vortex state of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 73, 724–727 (1994).

    CAS  Article  Google Scholar 

  12. 12

    Matsuda, Y., Gaifullin, M. B., Kumagai, K., Kadowaki, K. & Mochiku, T. Collective Josephson plasma resonance in the vortex state of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 75, 4512–4515 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Tsui, O. K. C., Ong, N. P. & Peterson, J. B. Excitation of the Josephson plasma mode in Bi2Sr2CaCu2O8+δ in an oblique field. Phys. Rev. Lett. 76, 819–822 (1996).

    CAS  Article  Google Scholar 

  14. 14

    Tamasaku, K., Nakamura, Y. & Uchida, S. Charge dynamics across the CuO2 planes in La2−xSrxCuO4 . Phys. Rev. Lett. 69, 1455–1458 (1992).

    CAS  Article  Google Scholar 

  15. 15

    Savel’ev, S., Rakhmanov, A. L., Yampol’skii, V. A. & Nori, F. Analogues of nonlinear optics using terahertz Josephson plasma waves in layered superconductors. Nature Phys. 2, 521–525 (2006).

    Article  Google Scholar 

  16. 16

    Savel’ev, S., Yampol’skii, V. A., Rakhmanov, A. L. & Nori, F. Terahertz Josephson plasma waves in layered superconductors: Spectrum, generation, nonlinear and quantum phenomena. Rep. Prog. Phys. 73, 026501 (2010).

    Article  Google Scholar 

  17. 17

    Hu, X. & Lin, S. Z. Phase dynamics in a stack of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation. Supercond. Sci. Technol. 23, 053001 (2010).

    Article  Google Scholar 

  18. 18

    Sievers, A. J. & Takeno, S. Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988).

    CAS  Article  Google Scholar 

  19. 19

    Trombettoni, A. & Smerzi, A. Discrete solitons and breathers with dilute Bose–Einstein condensates. Phys. Rev. Lett. 86, 2353–2356 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Sharon, E., Cohen, G. & Fineberg, J. Propagating solitary waves along a rapidly moving crack front. Nature 410, 68–71 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Flach, S. & Willis, C. R. Discrete breathers. Phys. Rep. 295, 181–264 (1998).

    CAS  Article  Google Scholar 

  22. 22

    Vitanov, N. K. Breather and soliton wave families for the sine-Gordon equation. Proc. R. Soc. Lond. A 454, 2409–2423 (1998).

    Article  Google Scholar 

  23. 23

    Thorsmolle, V. K. et al. C-axis Josephson plasma resonance observed in Ti2Ba2CaCu2O8 superconducting thin films by use of terahertz time-domain spectroscopy. Opt. Lett. 26, 1292–1294 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Dreyhaupt, A., Winnerl, S., Dekorsy, T. & Helm, M. High-intensity terahertz radiation from a microstructured large-area photoconductor. Appl. Phys. Lett. 86, 121114 (2005).

    Article  Google Scholar 

  25. 25

    Kresin, V. Z. & Morawitz, H. Layer plasmons and high- Tc superconductivity. Phys. Rev. B 37, 7854–7857 (1988).

    CAS  Article  Google Scholar 

  26. 26

    Basov, D. N. et al. Sum rules and interlayer conductivity of high- Tc cuprates. Science 283, 49–52 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Dordevic, S. V., Komiya, S., Ando, Y. & Basov, D. N. Josephson plasmon and inhomogeneous superconducting state in La2−xSrxCuO4 . Phys. Rev. Lett. 91, 167401 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Apostolov, S. S., Maizelis, Z. A., Sorokina, M. A., Yampol’skii, V. A. & Nori, F. Self-induced tunable transparency in layered superconductors. Phys. Rev. B 82, 144521 (2010).

    Article  Google Scholar 

  29. 29

    Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater. 8, 758–762 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    CAS  Article  Google Scholar 

  31. 31

    Boller, K-J., Imamoglu, A. & Harris, S. E. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991).

    CAS  Article  Google Scholar 

  32. 32

    Abdumalikov, A. A. Jr et al. Electromagnetically induced transparency on a single artificial atom. Phys. Rev. Lett. 104, 193601 (2010).

    Article  Google Scholar 

  33. 33

    Ozyuzer, L. et al. Emission of coherent THz radiation from superconductors. Science 318, 1291–1293 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Fulton, T. A., Dynes, R. C. & Anderson, P. W. Flux shuttle-Josephson junction shift register employing single flux quanta. Proc. IEEE 61, 28–35 (1973).

    Article  Google Scholar 

  35. 35

    Nakajima, K., Onodera, Y. & Ogawa, Y. Logic design of Josephson network. J. Appl. Phys. 47, 1620–1627 (1976).

    Article  Google Scholar 

  36. 36

    Feurer, T. A., Vaughan, J. C. & Nelson, K. A. Spatiotemporal control of lattice vibrational waves. Science 413, 374–377 (2001).

    Google Scholar 

Download references

Acknowledgements

We thank Y. Laplace for fruitful discussions. Research at the University of Oxford was supported by a 2004 European Young Investigator Award, by the Royal Society through the Paul Instrument Fund and by the EPSRC under the program Next Generation Facility Users. Research at the MPSD-CFEL in Hamburg was funded through core support by the Max Planck Society and the University of Hamburg. E.C. acknowledges the support from IMPRS-UFAST. We are grateful to P. Michel and the FELBE team for their dedicated support.

Author information

Affiliations

Authors

Contributions

A.C. conceived the project. A.D. and D.F. designed and built the experimental set-up and led the experimental activities. A.D., D.F., M.H., V.K. and N.D. performed the experiment and collected the data with assistance from M.G., S.W. and W.S.; A.D. analysed the data. E.C., L.Z. and M.E. developed the theoretical model and performed the simulation. S.P., H.T. and T.T. grew the samples. A.C. wrote the manuscript with contributions from E.C., L.Z. and M.E.

Corresponding author

Correspondence to A. Cavalleri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 675 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dienst, A., Casandruc, E., Fausti, D. et al. Optical excitation of Josephson plasma solitons in a cuprate superconductor. Nature Mater 12, 535–541 (2013). https://doi.org/10.1038/nmat3580

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing